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Abstract

Working memory, the ability to maintain and transform information, is critical for cognition. Spatial working memory is
particularly well studied. The premier model for spatial memory is the continuous attractor network, which posits that cells
maintain constant activity over memory periods. Alternative models propose complex dynamics that result in a variety of
cell activity time courses. We recorded from neurons in the frontal eye fields and dorsolateral prefrontal cortex of 2
macaques during long (5–15 s) memory periods. We found that memory cells turn on early after stimulus presentation,
sustain activity for distinct and fixed lengths of time, then turn off and stay off for the remainder of the memory period.
These dynamics are more complex than the dynamics of a canonical bump attractor network model (either decaying or
nondecaying) but more constrained than the dynamics of fully heterogeneous memory models. We speculate that memory
may be supported by multiple attractor networks working in parallel, with each network having its own characteristic mean
turn-off time such that mnemonic resources are gradually freed up over time.
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Introduction

Working memory is the ability to actively maintain and trans-
form information on the order of seconds. Most cognitive tasks
rely on working memory. Many studies address the neural cir-
cuits that support working memory and have implicated pre-
frontal cortex (PFC) as a key locus. In this study, we focus on
spatial working memory because spatial location is fundamen-
tal, continuous, and easily quantified. In monkeys, firing rates of
neurons in the frontal eye fields (FEF) and dorsolateral prefrontal
cortex (dlPFC), 2 prefrontal areas, elevate while subjects hold a
spatial location in memory (Fuster and Alexander 1971; Kojima
and Goldman-Rakic 1982; Bruce and Goldberg 1985; Funahashi
et al. 1989, 1993; Pellegrino and Wise 1993; Chafee and Gold-
man-Rakic 1998; Ferrera et al. 1999; Constantinidis et al. 2001;
Sommer and Wurtz 2001; Umeno and Goldberg 2001; Takeda and
Funahashi 2002, 2004).

Much of the electrophysiology literature on spatial work-
ing memory is based on tasks with memory periods of ∼1–
3 s. Elevated responses observed in these tasks are sustained,
often with little or no decay, for the entirety of the memory
period. These results have inspired models of neural bump
attractor networks, the premier framework for working memory
circuits (Amit 1992; Brunel 1996; Amit and Brunel 1997; Compte
et al. 2000; Wang 2009). Bump attractor networks model spatial
memory as a topographic map of nodes with local recurrent
excitation and global recurrent inhibition. A memorized location
is represented by the center of a “bump” of elevated activity
that is distributed across nodes. The bump can be maintained
indefinitely, even after the original stimulus is removed, due
to a balance between the excitatory and inhibitory connections
between nodes. Once formed, the amplitude and shape of the
bump do not change over time unless and until the entire circuit
is reset, at which point the bump disappears entirely. However,
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the bump can drift slowly and randomly over time, maintaining
its shape but contributing to a slow decay in memory accuracy
(Compte et al. 2000).

Other studies have demonstrated more complex dynamics
(Barak et al. 2013; Stokes et al. 2013; Murray et al. 2017; for a
review, see Lundqvist et al. 2018). Rather than a single steady,
sustained response that is repeated across all cells, these studies
argue that the activities of individual cells can differ widely from
one cell to the next. Some studies describe cells with upward or
downward ramps of activity (Brody et al. 2003; Jun et al. 2010).
Other describe more extreme dynamics in which individual cells
activate only briefly, for example, 10s to 100s of milliseconds
(Baeg et al. 2003; Harvey et al. 2012). When properly read out,
these complex dynamics can nonetheless provide a continu-
ous and robust memory trace (Goldman 2009; Murray et al.
2017). This is reminiscent of a liquid state machine, in which
the responses of individual spiking neurons can be completely
dissociated from the time course of the memory itself.

In this study, we investigated the dynamics of spatial working
memory responses in PFC during memory periods of up to 15 s.
Multiple memory locations (targets) continuously distributed
in space were tested to ensure optimal excitation. Electrodes
were continuously monitored and adjusted to maintain good
isolation. We find that most memory cells lose their tuned
memory activity before the end of a 15-s memory period. Sur-
prisingly, the times at which tuning was lost (turn-off times)
show greater consistency within individual cells compared with
across cells. In other words, individual cells have characteristic
mean turn-off times. Furthermore, once turned off, cells do
not turn back on. Thus, the dynamics of memory activity over
periods greater than a few seconds are more complex than
those predicted by a canonical bump attractor network or even a
decaying bump network but less complex than those predicted
by fully heterogeneous models of memory such as liquid state
machines.

Materials and Methods
Two cynomolgus macaques (Macaca fascicularis), C and W, were
trained on a center-out memory-guided saccade task. During the
task subjects sat in a completely dark room in a primate chair,
head-fixed in a straight-ahead position and facing a screen
located 30 cm away. Visual stimuli were controlled with custom
software and projected using a CRT projector. Eye position was
recorded using infrared video eye-tracking system (ISCAN, MA).
The data and code used for analysis are available upon request.
All procedures conformed to the Guide for the Care and Use
of Laboratory Animals and were approved by the Washington
University Institutional Animal Care and Use Committee.

Behavioral Task

In the memory-guided saccade task monkeys were required to
remember a peripheral spatial location (Fig. 1A). Each trial began
with the presentation of a fixation point on which monkeys
had to fixate within 3.3 degrees of visual angle (dva). After
1.5 s, a peripheral memory target was flashed for 300 ms at a
random location on a circle with a radius of 12 and 15 dva, for
monkeys C and W, respectively, centered on the fovea. Stimu-
lus presentation was followed by a memory period that lasted
for 5.1–5.6 (5-s trials), 7.6–8.1 (7.5-s trials), or 15.6–16.1 s (15-
s trials), during which time the subject maintained fixation

Figure 1. Memory task and performance. (A) The task begins with 1.5 s of central

fixation. A peripheral stimulus turns on for 300 ms and is then extinguished.
Memory targets can appear anywhere along a circle with a radius of 12 and
15 deg for monkeys C and W, respectively. After a memory period of 5.1–15.6 s, the

subject makes a saccadic response to the remembered location. To encourage
the animals to fixate through a long delay, up to 4 mid-trial rewards were
delivered during the memory period (see Materials and Methods). (B) Proportion
of memory failures, that is, memory-guided saccades directed >80 degrees of arc

from the target, divided by the number of trials in which fixation was maintained
up until the go cue. Memory failures are plotted as a function of memory period
length for each monkey (Monkey C—gray, Monkey W—black). (C) The mean
angular error of saccadic responses as a function of memory period length,

excluding memory failures. Error bars are standard error. (D) The mean Euclidean
error of saccadic responses as a function of memory period length. Standard
errors in (B) and (D) are smaller than the data points themselves. Trials with
endpoints >80 deg from the target (memory failure trials) are excluded from

(C) and (D). The sets of 3 data points in (B–D) are not cumulative, but instead
represent results from just the 5, 7.5, and 15-s trials, respectively.

while remembering the location of the flashed stimulus. Sub-
jects received up to 4 small rewards during the memory period
(Supplementary Fig. S1). The number of rewards changed over
the course of data collection but was constant during any one
day. At the end of the memory period, the fixation point disap-
peared, cueing the subject to shift their gaze to the remembered
location. If the initial memory-guided saccade landed within 5.5
dva of the target, the subject received an immediate reward. This
reward encouraged, but did not necessitate, precise mnemonic
behavior. The memory target reappeared 300 ms after the initial
saccade. The subject was then required to make a corrective
saccade to within 3.5 dva of the visible target in order to receive a
final large reward. Animals were allowed to blink throughout the
task, including during the memory period. Blinks were detected
when the pupil was at least 80% occluded. Eye positions detected
during blinks were removed and interpolated based on eye
positions just before and after the blink.

Behavioral Performance

We computed several measures of performance. Trials were
immediately aborted and labeled as a “fixation break” if the ani-
mal’s eye position moved >5 dva from the fixation point before
the go cue. Of the remaining trials, those in which the memory-
guided saccade landed >80 degrees of arc from the memory
target were classified as “memory failures.” Both fixation breaks
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and memory failures were excluded from all subsequent behav-
ioral and unit analyses, with the exception of the analysis shown
in Figure 1B and Supplementary Figure S1.

We operationalized the animals’ behavioral precision by
computing angular error of the memory-guided saccades.
Specifically, angular error was computed by subtracting the
angle of the memory target from the angle of the memory-
guided saccade. Positive and negative angular errors demon-
strate the saccade was counter-clockwise and clockwise from
the memory target position, respectively. To quantify precision,
we computed the mean of the absolute value of saccadic angular
error (Fig. 1C). We used a similar process to with Euclidean error,
that is, the error in 2 dimensions (Fig. 1D).

We estimated the proportion of trials in which the animal
completely forgot the target and was forced to guess (guess rate)
by fitting a mixed probability model (Bays et al. 2009; Zhang and
Luck 2009). The model describes the probability density function
of the saccadic angular error, θerr, as:

p (θerr) = (1 − γ ) f (θerr|κ) + γ
1

2π

where f
(
θ |κ

)
is a von Mises distribution with a mean of zero

and a concentration parameter κ, and γ is the guess rate. The
model was fit to empirical saccadic angular errors with a maxi-
mum likelihood estimation paradigm optimized with a bounded
limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm
(Virtanen et al. 2020). A guess rate estimate was made for each
session. For our purposes, only data from 15-s trials were con-
sidered.

We assessed whether the animals simplified spatial rep-
resentations, for example, remembering which quadrant the
target was in rather than its precise position. Such simplifica-
tion might lead to systematic drift of spatial representations,
that is, representations shift from target position to the sim-
plified spatial direction. To test for such an effect, we binned
trials by target direction (32 bins, each 11.25 deg). For each
bin, we computed the direction for the mean saccadic end-
point (Supplementary Fig. S4). For this analysis, we separately
considered each animal and each delay length (5, 7.5, or 15 s).

Electrophysiology

In each experimental session, 1 to 4 electrodes (AlphaOmega)
were lowered into the FEF and/or dlPFC. Some time was ded-
icated to manually isolating as many single units as possible
across all electrodes. Once a sufficient number of electrodes
had isolated single units, neuronal memory tuning was assessed
with a memory-guided saccade task with a 1.5-s delay. If at least
one cell exhibited spatial tuning during the delay, all the isolated
units (including untuned units) were selected for recording. Oth-
erwise, all electrodes were lowered further and these search pro-
cedures were restarted. If no spatially tuned units could be found
before the animal performed too many search trials (inferring
the animal would perform too few long-duration trials) and one
or more untuned cells were isolated, those units were selected
for recording. Untuned cells are only included in this report if
they were recorded from a track from which at least one cell
with mnemonic spatial tuning (as verified by offline analysis)
was recorded. In total, 161 cells were recorded and included in
our analyses.

Sites were considered FEF sites if they lay within 250 microns
of a site at which saccades could be evoked with 50 micro-
amps of current or less (Bruce and Goldberg 1985). All other
sites anterior to FEF were classified as dlPFC (see Fig. 8 and
Supplementary Fig. S6 for locations of recording tracks).

Memory Tuning

We classified our cells into those that showed memory tuning
in the early memory period and those that did not. We first
identified the preferred direction by fitting a cosine function
to the data. Next, we pooled trials into 2 groups—preferred
direction trials, in which the target appeared within ±33.75 deg
of the preferred direction, and null direction trials, in which the
target appeared within ±33.75 deg of the direction diametri-
cally opposite the preferred direction. Trials in which the target
appeared outside these 2 ranges were excluded from this analy-
sis. Cells were considered “tuned” if their firing rate was greater
for preferred compared with null direction trials (t-test, P < 0.05)
in either of 2 early memory periods (0.5–1.5 or 2–4 s after target
onset). We found 70 cells that were significantly tuned in at least
the first interval and 23 cells that were significantly tuned in the
second interval but not the first interval, for a total of 93 tuned
cells. The 68 cells with P > 0.05 in both intervals were classified
as untuned, though 15 of these “untuned” cells (in the memory
period) were tuned during stimulus presentation (50–300 ms
after target onset). Using different or additional early memory
intervals had only minor effects on these classifications.

We assessed the evolution of directional tuning over 15 s
of memory at the population level by computing mean tuning
curves (Fig. 3A–E) at an array of intervals. Across all cells, pre-
ferred directions were aligned to 0 deg. Target locations were
grouped into 45 deg bins. Population-averaged tuning curves
were estimated by fitting von Mises functions to the mean
binned firing rates over particular intervals (the 2 early memory
intervals—0.5–1.5 and 2–4 s—and 3 intervals corresponding to
the end of our 3 delay lengths—3–5, 6–7.5, and 12–15 s). Con-
fidence intervals (CIs) for fit statistics were computed with a
bias-corrected and accelerated bootstrap (Sheppard et al. 2020).

Tuning Changes and Decay

We modeled how the random drift of a bump in an attractor
circuit that does not decay would affect firing rates in single-
unit recordings, and in particular, if random drift might account
for the drop in tuning we observed in our memory cells (see
Results). We assumed that the observed behavioral error was
an exact readout of bump drift, that is, the amount of error on
any one trial indicates the amount of drift on that trial. Note
that this assumption likely overestimates the actual drift, but
since we ultimately conclude that drift is too small to account
for the observed change in neuronal activity (see Results), the
assumption is conservative, assuming that other sources also
contribute to the behavioral error would only strengthen our
conclusion. We separately considered 5, 7.5, and 15-s trials. For
each trial we shifted the early memory tuning curve (Fig. 3A) by
an amount equal to the saccadic angular error of that trial and
then sampled the firing rate at a random target location. As with
our observed data, we fit our simulated data with von Mises
functions. The amplitude of these fits provides a prediction
of how random drift over 5, 7.5, or 15 s might be expected to
diminish tuning. In order to determine whether random drift
was sufficient to account for the decrease in tuning that we
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observed, we then compared this prediction with our observed
data fits. We performed a similar analysis in 2 dimensions for
15-s data. Fit statistics were assessed with bootstrapping.

We estimate mean turn-off times—the times at which cells
on average become untuned—for each cell. We first computed
tuning amplitude in each cell for the 0.5–1.5 and 2–4-s memory
period intervals. The larger of the 2 values was taken as the
maximal tuning of the cell. A cell’s mean turn-off time was
then defined as the time when the trial averaged tuning of
the cell first dropped below 25% of its maximal value and
thereafter remained below that level for at least 1.5 s. Vari-
ations of the criterion value did not change our conclusions.
Because some cells did not show tuning until over 2 s into the
memory period and could thus not lose tuning before then,
the histogram of mean turn-off times (Fig. 4A) was truncated
on the left at 2.5 s. Nine cells reached peak tuning early and
turned off before 2.5 s had elapsed; these cells were placed in
the first histogram bin. We compared our 25% criterion method
to a statistical method and found that the methods agreed for
cells with sufficiently large initial tuning and sufficiently many
trials (Supplementary Fig. S9). The statistical method tended to
estimate earlier turn-off times when either initial tuning or trial
counts were low.

We assessed whether turn-off times were cell-specific in 2
ways. In the first analysis, for each cell, we split trials randomly
into 2 groups and computed the mean turn-off time of each
group (Fig. 4D). Subsequently, we computed a correlation across
cells. This procedure was carried out 10 000 times and an average
correlation was produced. A positive correlation would support
that turn-off times are more consistent within cells compared
with across cells. For the second analysis, we included trials in
which the cell does not turn off. We correlated turn-off time
with the proportion of sustained trials (Fig. 4E). If turn-off time
is consistent within cells, then cells with later mean turn-off
times should have a greater number of sustained trials. Impor-
tantly, these 2 measures are independent—mean turn-off time is
recomputed excluding sustained trials. Sustained trials for each
cell were identified as follows: Preferred direction firing rate
time courses were averaged across trials and the baseline firing
rate was subtracted from this average. A threshold was defined
as 50% of the maximum value during an interval from 0.5 to
4 s after the target onset. Trials for which the firing rate rose
above this threshold and remained above this threshold were
considered sustained. Trials during which the firing rate rose
above and then dropped below this threshold were considered
turned off. All other trials were excluded.

We compared cell turn-off time to intrinsic time scales mea-
sured during fixation. Our analysis and inclusion criteria was
identical to those described by Wasmuht et al. (2018), with the
exception that our fixation interval was 1.5 s instead of 0.5 s.
In accord with the description by Wasmuht and colleagues, we
excluded 2 cells with a mean firing rate < 1 sp/s, 6 cells with at
least one time bin with no spikes across all trials, and 34 cells
with quasi-linear fits. Additionally, we excluded 1 cell for which
an optimal fit could not be found and 1 cell with an outlier time
constant less than 1 ms. This left 48/93 cells (52%) to be included
in the analysis.

Sustained Cells

We wished to know whether there are cells that sustain memory
activity indefinitely, but we were unable to employ indefinitely

long memory periods and thus could not distinguish true sus-
tained cells from cells that would eventually turn off. To address
this, we modeled cell turn-off as an exponentially distributed
random variable and fit a curve to turn-off times between 2.5
and 15 s of memory. We then extrapolated this curve to estimate
the number of cells that we would expect to maintain memory
beyond 15 s. The 9 cells that turned off before 2.5 s were not
included in the fitted data, because we may have undersampled
cells with short memory periods, though the results were similar
without this exclusion. An exponential decay fit the data better
than a linear decay. Extrapolating the fit beyond 15 s and taking
its area (light gray region in Fig. 8A) provides an estimate of the
number of cells expected to turn off at some time after 15 s. We
then tested the hypothesis that all of our cells fit this pattern,
that is, that there are no true sustained cells, by subtracting
this estimate from the observed number of cells still holding a
memory after 15 s and asking if the difference was greater than
that which would be predicted by chance given uncertainties in
the fit and the data.

Untuned Cells

We wanted to know if cells that are initially untuned might
become tuned later in the memory period. We recorded 68 cells
without tuning in the first 4 s of the memory period and tested
whether they developed tuning at any point later in the memory
period. To accomplish this, we split the data for each cell into
500 ms time bins, fit a cosine function to the firing rates in each
bin, and tested for a significant fit. We conducted a bootstrap
analysis to compare the observed proportion of tuned intervals
with the proportion expected by chance. We simulated 1000
shuffled cell populations with 68 cells each. Each trial for a given
cell was replaced by a randomly sampled (with replacement)
trial of the same duration (5, 7.5, 15 s) from the set of all trials
in the population. We calculated the proportion of significantly
tuned intervals for each of the shuffled cell populations to
generate a distribution for the proportion of tuned intervals
expected by chance, to which we compared the observed pro-
portion of tuned intervals (Table 1). We also repeated the entire
analysis for time bins of 2000 ms (Table 2).

Cells With Opposite Early and Late Tuning

Of the 93 memory cells, 15 showed early tuning that was oppo-
site in sign compared with memory tuning. To identify these
cells, we tested the following time intervals in order, stopping
once we found significant tuning: 200–600, 300–700, 400–800,
500–900, and 600–1000 ms (each relative to target onset). If the
polarity of tuning in the first significantly tuned early interval
opposed that in the 2–4-s memory period interval, then that cell
was classified as a cell with opposite early and late tuning. Of the
15 cells identified, 11 showed opposite tuning in the 100–300-ms
interval, 3 in the 200–300-ms interval, and 1 in the 300–700-ms
interval (shown as an example in Fig. 9A). We found no cells with
opposite early and late tuning that did not show significant early
tuning by the 300–700-ms interval.

Active- and Inactive-Cell Tuning

We investigated how the subgroup of cells that remained on
at any given time behaved over the course of the memory
period (Fig. 5A). We estimated mean active-cell tuning by step-
ping through each time point, t, during the memory period
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Table 1 Cells untuned in the early memory period show no tuning in later memory. Columns are the proportion of time intervals that show
significant tuning at criterion P values of 0.01, 0.025, and 0.05; the P value that this is different from the proportion expected by chance, and
the maximum proportion compatible with the P value. The analysis was done using 500-ms time intervals. In no case is the percentage of
significantly tuned cells higher than that expected by chance, as determined by repeating the analysis on 1000 simulated cell populations in
which trials have been randomly shuffled and taking the 2.5th percentile. {#tbl:cells-500 ms}

Significance criterion Proportion tuned P value Chance bound

P < 0.01 0.005 0.89 0.013
P < 0.025 0.018 0.82 0.029
P < 0.05 0.038 0.90 0.053

Table 2 Same as Table 1, but with 2000-ms time intervals. {#tbl:cells-2000 ms}

Significance criterion Proportion tuned P value Chance bound

P < 0.01 0.007 0.56 0.017
P < 0.025 0.017 0.76 0.037
P < 0.05 0.037 0.85 0.065

and computing the mean tuning of all cells with a mean turn-
off time greater than t. Likewise, we estimated mean inactive-
cell tuning by stepping through each time point, t, during the
memory period and computing the mean tuning of all cells with
a mean turn-off time less than or equal to t.

We compared our experimental data to cells from a sim-
ulated decaying bump network. We modified code written by
Wimmer et al. (2014, Supplementary Code 3) to model our cells.
In brief, a network consisting of 512 topographically connected
nodes (analagous to neurons) is stimulated so as to introduce
a “bump” of activity across the network. The bump of activity
is maintained by the network but slowly decays over the delay.
We iteratively modified parameters so that the network would
decay to 0–50% of initial tuning over 15 s, matching the data
we recorded. For each simulation, we extracted the firing rate
of a cell at the initial center of the bump and the firing rate of a
cell opposite the initial center of the bump. We then estimated
tuning by computing the difference between these 2 rates. We
carried out 740 network simulations as well as 190 simula-
tions of a similar network that did not decay. This procedure
yielded 930 independent tuning trajectories. We grouped these
trajectories into sets of 10, averaged them and smoothed them
with a Gaussian filter (σ = 25 ms) to produce 93 mean tuning
trajectories: 74 from the decaying network and 19 from the
nondecaying network. This set of procedures produced a data
set similar to our experimental data: 19 sustained cells and
74 nonsustained cells. We then compared active- and inactive-
cell tuning in the recorded and simulated data sets (Fig. 5B).
Similar to our experimental data, turn-off times were estimated
as the time when mean tuning dropped below 25% of initial
tuning (mean during 1–2 s after stimulus onset) and thereafter
remained below that level for at least 1.5 s.

Comparison With Previous Literature

It is critical to know whether FEF and dlPFC cells that we identify
as memory cells are similar to memory cells identified in previ-
ous studies of FEF and dlPFC. To establish this, we analyzed our
data using approaches from those studies. Typically, investiga-
tors used memory periods of no more than 3 s (e.g., Chafee and
Goldman-Rakic 1998, 3 s; Clark et al. 2012, 1 s; Leavitt et al. 2018,
0.5–1.5 s; Markowitz et al. 2015, 1.0–1.5 s; Mendoza-Halliday et al.
2014, 1.2–2.0 s; Funahashi et al. 1989, 3 s; Wimmer et al. 2014,

3 s; Romo et al. 1999, 3–6 s; for a review, see Constantinidis et al.
2001). We first replicated the memory tuning plots of Funahashi
et al. (1989, Fig. 3); Chafee and Goldman-Rakic (1998, Figs 11
and 12); Clark et al. (2012, Figs 1–4), comparing unit activity
over just the first 3 s of the memory period for preferred and
null direction targets (Fig. 7A–D). Next, we replicated the receiver
operating curves (ROC) analysis of Clark et al. (2012) (Fig. 7E–H).
We computed a single AUC value for each cell and considered
the distribution (Fig. 7I). The interval used for that computation
depended on cell identity. We used 0.5–1.5 s after target onset
for the 70 cells that were significantly tuned during that interval
and 2–4 s for the remaining 23 cells. Additionally, for single cells,
ROC areas under the curve (AUC) were calculated at each time
point over an interval with a sliding 500-ms window (Fig. 7E–H).

Results
We used long memory periods of up to 15 s to systematically
examine the time course of spatial working memory activity
in prefrontal memory circuits. Two cynomolgus macaques (M.
fascicularis), C and W, performed a memory-guided saccade task
(Fig. 1A). Subjects were shown a brief peripheral stimulus and
required to remember its spatial location for a period of 5.1–
5.6, 7.6–8.1, or 15.1–15.6 s. For simplicity, we nominally refer to
these as 5, 7.5, and 15-s trials, respectively. After the delay, the
animals were rewarded for making a saccade to the remembered
location. Mid-trial rewards were used to encourage the animals
to stay on task through the longer delays (see Materials and
Methods).

Behavioral performance deteriorates with longer memory
periods. As the memory period extends from 5 to 15 s, the
incidence of grossly inaccurate trials, that is, angular errors
>80 degrees of arc from the target, increases from 1% to 5%
in Monkey C and from 5% to 12% in Monkey W (P < 0.0001, t-
test, for each monkey; Fig 1B). The average error in the remain-
ing saccadic responses increases with delay time—the angular
error increases from ∼15 to ∼18 deg (Fig. 1C; P < 0.001 for each
monkey) and Euclidean error increased from ∼3.5 to ∼4.3 dva
(Fig. 1D; P < 0.001 for each monkey). See Holmes et al. (2018) for
additional details. Trials in which the subject broke fixation prior
to receiving a go cue (Supplementary Fig. S1) were excluded
from this and subsequent analyses.
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Figure 2. Tuning throughout the memory period for 93 memory cells. (A) Popula-

tion neural activity when the memory targets were in the cells’ preferred direc-
tions (0 deg; red trace), null directions (180 deg; green trace), or at various points
between (orange and yellow traces). (B) Memory tuning (difference between the

red and green traces of A). Shading indicates the ±1 standard error of the mean.

We recorded from 88 cells in the FEF and 73 cells in the dlPFC,
totaling 161 cells. We found no substantial differences in our
analyses between these areas and thus pooled the data across
areas. Of the 161 recorded cells, 93 (41 FEF, 52 dlPFC) showed
significant tuning in an early memory interval (either 0.5–1.5 or
2–4 s after target onset; see Materials and Methods) and were
thus classified as memory neurons. When a memory target was
in a memory cell’s preferred direction, population activity was
elevated compared to when a target was in the null (opposite)
direction (Fig. 2A). This difference was sustained for the entire
duration of the trial, but waned over the course of memory,
particularly over the first 6 s (Fig. 2B).

Population Tuning Decay Is Not Explained
by Network Drift

Bump attractor networks are susceptible to random drift. On
any one trial, the network may transition across a continuum
of stable states in a random walk. Consequently, trial-averaged
tuning curves become shallower and wider over time (Compte
et al. 2000; see also Supplementary Fig. S2). Indeed, our data
demonstrate that tuning curves, computed as von Mises fits
to population averaged activity, attenuate over the course of
15 s (Fig. 3A–E). Fits decrease in amplitude (peak-to-trough) with
time, decaying from 5.2 sp/s in early memory (bootstrap 95% CI,
[4.5, 6.1] sp/s) to 2.1 sp/s by late delay (−60%; [1.5, 2.6] sp/s).

To quantitatively test if random drift of the network’s bump
of activity could sufficiently account for the observed drop in
activity, we compared the observed end-of-delay tuning curves
to simulated curves obtained as follows: For each trial, we
shifted the early population tuning curve (Fig. 3A) by an amount
equal to the saccadic angular error of the trial. The shape of the
tuning curve was always the same—only the center differed,
that is, drifted, from trial to trial. We then sampled the firing

rate at a single random direction, analogous to our actual data
collection. We binned and averaged the data by direction and
fit a von Mises function to these data. This procedure was
carried out separately for 5, 7.5, and 15-s trials. As expected,
the simulated end-of-delay tuning curves’ amplitudes were
attenuated compare to the early tuning curve (differences
from initial tuning—5-s trials, −1.8 sp/s, 95% bootstrap CI
[−2.6, −0.8] sp/s; 7.5-s trials, −3.1 sp/s, CI [−4.4, −2.1] sp/s; 15-s
trials, −3.2 sp/s, CI [−4.4, −2.0] sp/s; Figs 3C–E). However, these
analyses underestimate the observed attenuation (differences
between simulated and observed end-of-delay amplitudes—
5-s trials, +1.2 sp/s, CI [+0.3, +2.1] sp/s; 7.5-s trials, +2.4 sp/s,
CI [+1.5, +3.7] sp/s; 15-s trials, +2.4 sp/s, CI [+1.3, +3.4] sp/s;
Fig. 3F). We also simulated random drift in 2 dimensions for
15-s trials, allowing activity to drift on the 2-dimensional plane
representing the screen on which the targets were presented.
Like the 1-dimensional drift, 2-dimensional drift predicted
less attenuation than what was observed. These simulations
formalize the intuition that the large drop in tuning cannot be
explained by bump attractor drift alone. While drift may occur
and may contribute to tuning loss, our results suggest that some
other mechanism must be the primary driver of the drop in
tuning.

Cell Dynamics Are Heterogeneous But Systematic

We next compared the loss of tuning in the network to activ-
ity profiles of single cells and asked whether the tuning time
courses were correlated across cells. A synchronized loss in tun-
ing would be consistent with an imperfect, or decaying, bump
network. A decaying bump network is similar to a bump attrac-
tor network, except that inhibition slightly dominates excita-
tion. Thus, activity in a decaying bump network gradually falls
back to baseline over time (Wimmer et al. 2014). In a decaying
bump network, cells should lose tuning with time constants that
are similar to each other and to the dynamics of the network as
a whole.

We operationalized tuning loss by calculating a “mean turn-
off time”—the time when a cell switches from being tuned to
untuned as calculated across trials. We calculated tuning as a
function of time for each cell and defined the mean turn-off
time as the time when the cell dropped to 25% of its maximum
tuning and remained below that level for at least 1.5 s thereafter.
Mean turn-off times were broadly distributed throughout the
entire memory period (Fig. 4A,B; see also Supplementary Fig. S3).
Only 19 of the 93 cells did not turn off over 15 s of mem-
ory. With a homogeneous process, we would have expected
few if any cells to drop to 25% of maximum tuning, since the
observed population activity only drops to 45% after 15 s. These
results indicate a heterogeneous decay mechanism rather than
a homogeneous one.

We next asked whether cells that lose memory tuning may
regain it before the end of the memory period. We excluded the
19 sustained cells from this analysis. We additionally excluded
another 25 cells with a mean turn-off time greater than 9 s, as
these cells would only have ∼5 s to turn back on, potentially
biasing our results. We found that only 1 of the remaining 49
cells showed a recovery of significant memory tuning later in the
memory period (criterion for significance, P < 0.05, no multiple
comparisons correction). Including the 25 cells that turned off
after 9 s of memory did not change this result.

We next asked whether the broad distribution of turn-off
times was times were due to systematic differences in dynamics
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Figure 3. (A–E) Population activity as a function of memory target location at different times in the memory period (A, 0.5–1.5 s; B, 2–4 s; C, 3–5 s; D, 6–7.5 s; E, 12–15 s).

Data points and their error bars indicate observed firing rate means and their standard errors, respectively. Blue lines depict von Mises fits to the data. Thin gray lines
depict fits to the 0.5–1.5 s (early) data, for comparison. Red curves (C–E) depict the tuning curve predicted from drift simulation. (F) Tuning amplitudes predicted from
drift simulation (red) and amplitude actually observed (blue) at the end of delays for 5, 7.5, and 15 s. Amplitude is computed as the peak-to-trough difference of the
von Mises fit to the data. Error bars indicate bootstrap 95% CIs. The difference between predicted and observed amplitude is significant (P < 0.05, 2-sided bootstrap

test) for all 3 trial lengths.

Figure 4. Tuning properties of individual cells. (A) Distribution of mean turn-off times, that is, when cells trial-averaged tuning drop to 25% of its early memory
magnitude. (B) Survival curve of mean turn-off times showing the percentage of cells that remain on (tuned) throughout the memory period. Of the 93 cells, 19 (20%)
do not turn off even after 15 s of memory. (C) Firing rates from 5 example cells in individual 5 s (blue), 7.5 s (green), and 15 s (red) trials when the memory target was
in the cell’s preferred direction. The black trace is the mean response. (D) Mean turn-off times estimated from 2 randomly selected subsets of trials for each cell are

correlated (r = 0.41, P < 0.001). Each point represents data from one cell; data from all but the 19 persistent cells are included. The line represents a type II regression. (E)
Correlation of mean turn-off time of trials in which the cell turned off versus the proportion of trials in which tuning persisted for the entire memory period (r = 0.57,
P < 0.0001). Each point represents data from 1 cell; data from all 93 cells are included. The line represents a type II regression.

across cells or simply due to obtaining too few trials from each
cell. At the extreme, if we obtained only 1 trial per cell, turn-off
times would vary greatly from cell to cell. Therefore, we asked
if the distribution of turn-off times within each individual cell

was more limited than the distribution of turn-off times found
across the entire population. Figure 4C shows 5 example cells:
2 that consistently turn off early, 2 that consistently turn off late,
and 1 with a consistent sustained response. Generally, activity
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patterns were consistent within each cell: any given trial was
more similar in time course to the other trials from that same
cell, compared with trials from other cells.

We quantified turn-off time consistency by assessing mean
turn-off times across subsets of trials. For each cell, we randomly
split all the trials in which the cell turned off into 2 groups
and computed a mean turn-off time for each group. We then
tested the correlation between group mean turn-off times across
cells. If turn-off times reflect idiosyncratic properties of indi-
vidual cells, then the mean turn-off times will be correlated. If
turn-off times are not cell specific, then mean turn-off times
would not be correlated. This analysis is analogous to a cross-
validation test. Figure 4D illustrates the results of one example
random split. Mean turn-off times are clearly correlated across
cells (r = 0.41, P < 0.001). We repeated this analysis 10 000 times,
each time with a new random split. Across these 10 000 repe-
titions, we consistently found clear correlation (mean r = 0.35;
P < 0.0001, permutation test).

This analysis necessarily excludes trials in which the firing
rate was sustained. In a second analysis, we used sustained trials
to further assess whether mean turn-off time is cell specific. We
reasoned that if mean turn-off time is a cell-specific property,
then mean turn-off time should correlate with the proportion of
sustained trials—cells with an early mean turn-off time should
be less likely to stay on for the entire duration of a trial, and like-
wise, cells with a later mean turn-off time should be relatively
more likely to stay on for the entire duration of the trial. Alterna-
tively, if turn-off times reflect noise in a homogeneous network,
then mean turn-off time and the proportion of sustained trials
should be uncorrelated. For this analysis, we recomputed turn-
off times only with trials in which the cell turned off (see
Materials and Methods). Doing so enforced that turn-off time
and the number of sustained trials were independent. We find
a clear correlation between each cell’s mean turn-off time and
the proportion of sustained trials for that cell (Fig. 4E, r = 0.57,
P < 0.0001).

Individual cells may appear to have characteristic mean turn-
off times if turn-off time reflects memory decay and memory
decay varies from session to session. To rule out this possibil-
ity, we compared mean turn-off time with an array of mea-
sures of performance: hit rate, median saccadic angular error,
median saccadic absolute error, and a guess rate (see Materi-
als and Methods). In particular, if differences in turn-off times
across sessions reflect or underlie differences in behavioral
performance, then turn-off times and behavior should be cor-
related. However, none of the behavioral measures exhibited
a significant correlation (Spearman’s R) with turn-off time (hit
rate, R = 0.12, P = 0.24; median saccadic angular error, R = −0.041,
P = 0.70; median saccadic absolute error, R = 0.020, P = 0.85; guess
rate, R = −0.18, P = 0.086; no corrections for multiple compar-
isons). We also leveraged sustained cells by asking whether
behavioral performance differed when a cell’s tuning was sus-
tained as compared with when tuning was lost. Again, no rela-
tionship was found (rank-sums tests; hit rate, P = 0.48; median
saccadic angular error, P = 0.86; median saccadic absolute error,
P = 0.78; guess rate, P = 0.16).

Though variation in behavior could not be linked to cell turn-
off times, some other latent variable that varies from session-
to-session may explain the apparent cell-specificity of turn-
off time. If this were true, then we would expect simultane-
ously recorded cells to have similar mean turn-off times. We
asked if this was the case by computing intraclass correlation of
turn-off times across 15 pairs of simultaneously recorded cells
(Vallat 2018). Correlation was not significant (R = 0.15, 95% CI

[−0.36, 0.6]). Taken together, our analyses indicate that turn-
off times are cell specific, varying less across trials for indi-
vidual cells than across cells, and suggest that the mechanism
underlying the loss of tuning is at least partly cell-specific in
nature.

Previous studies have described intrinsic time scales of mem-
ory neurons (Wasmuht et al. 2018). These time scales predict
tuning dynamics during a memory task. We asked whether the
intrinsic timescales of our neurons could predict mean turn-off
time. We found no correlation between these values (R = 0.094,
P = 0.52).

Finally, we considered whether animals might, over time
within a single long trial, shift from remembering a precise
location to more a generic representation (e.g., a quadrant).
Such behavior would invalidate our interpretation of the neu-
ral data. A shift of memory from the specific location to a
generalized representation could move the memory out of a
cell’s mnemonic field and thus cause the cell to lose its tun-
ing. To test for such behavior, we asked if target end points
systematically shift to cluster about a small number of direc-
tions and if the degree of this clustering increases over longer
delays. Memory saccades were biased toward horizontal direc-
tions (Supplementary Fig. S4). However, for systematic shifts of
this nature to cause cells to turn off, the representation would
need to shift by a distance greater than or equal to the cell’s tun-
ing curve’s half-width-at-quarter-height. Absolute directional
shifts across bins had a maximum of 25.4 and 23.5 deg for
Monkeys W and C, respectively—substantially less than the
population average half-width-at-quarter-height (∼75 deg). Fur-
thermore, a drift sufficient to turn cells off in the middle of the
memory period would cause other cells to turn on in the middle
of the memory period. In our data set, cells either develop spatial
mnemonic tuning in the first 2 s or remain untuned throughout
even our longest memory interval (see Individual Cells Become
Tuned Early and Consistently). Finally, this explanation would
predict that the mnemonic fields of sustained cells would be
clustered about the points toward which the memory represen-
tations drift, which was not the case (Supplementary Fig. S4).

Cells Transition From a Distinct Turned-On State to a
Distinct Turned-Off State

We have contrasted a model in which all cells turn off from grad-
ual decay with identical rates with a model in which cells turn
off at different times from heterogeneous dynamics. We argue
for the latter, but the nature of the heterogeneity is unclear.
At one extreme, all cells may gradually decay but with dif-
ferent rates. At another extreme, cells may turn off abruptly
at different times. To characterize the heterogeneity, we asked
whether individual cells show a progressive drop in tuning prior
to when they are estimated to turn off. At each millisecond, the
population of cells was split into 2 groups: cells with a mean
turn-off time after the current time point (on cells) and cells
with a mean turn-off time at or before the current time point
(off cells). As time progresses, more cells shift from on to off. We
examined the mean tuning over time for on cells, off cells, and
for the entire population (Fig. 5A). Although the tuning of the
entire population decays over time, the average tuning strength
of the on cells exhibits a modest increase in tuning over the
15-s memory period. Cells that have turned off are completely
untuned (with the exception of an activity increase at the end
of the longest memory period that may reflect anticipatory
effects). These results suggest that the decay in population level
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Figure 5. Tuning of cells conditioned on mean turn-off time. (A) Blue trace—
tuning of the entire population of 93 cells. Red trace—tuning strength of cells

with a mean turn-off time greater than current time (on cells). Green trace—
tuning of cells with a mean turn-off time less than or equal to the current time
(off cells). Note that the data in the red trace comprise progressively fewer cells
with time (from 93 to 19), whereas the green trace comprises progressively more

cells (from 9 to 74). (B) Tuning of 93 modeled bump attractor cells, of which 19
are sustained and 74 are nonsustained. Format as in (A).

tuning results from cells shifting from an on state to an off state
and not from gradual decay of individual neurons.

For comparison, we modeled a decaying bump network of 74
nonsustained cells and 19 sustained cells, matching our record-
ings (see Materials and Methods). Tuning differed dramatically
in the simulation (Fig. 5B) compared with our recorded data
(Fig. 5A). Whereas some of our experimentally observed cells
turned off as early as 2.5 s into the memory period, all of the
modeled cells remained on for at least 10 s. Once off, modeled
cells retained some tuning (recall that “turned-off” cells are
classified by having dropped below 25% of maximal tuning and
so may still be slightly tuned), unlike our recorded cells that
were virtually untuned. Most striking is the fact that the on
cells in our model show a clear drop in tuning, demonstrating
that individual model cells decay gradually, in contrast to the
population of recorded cells, which maintain constant tuning for
as long as they are on.

Individual Cells Become Tuned Early and Consistently

We next asked if the times at which cells first became tuned
showed similar variance to the variance of turn-off times. To

address this, we assessed whether cells turned on at any time
during in the memory period or just at the very start. For
this purpose, we could not use the 93 memory cells we have
previously described as they were selected specifically because
they became tuned early in the memory period, and this would
bias our results. However, during the same set of experiments,
we also recorded from 68 cells without tuning in the first 4 s
of the memory period. These cells were located in the same
FEF or dlPFC tracks as the 93 cells with early tuning. Nineteen
of these 68 cells exhibited significantly tuned visual responses
(P < 0.05) during the 300 ms of stimulus presentation. We tested
whether any of these 68 cells became tuned later in the memory
period. We divided the memory period into 500-ms intervals
and fit cosine functions of target location to the firing rates
within each interval. We computed the proportion of signif-
icantly tuned intervals using 3 different significance criteria
(Table 1) using a permutation test (see Materials and Methods).
We also repeated this analysis with 2000-ms intervals (Table 2).
We found that the number of significantly tuned intervals was
not greater than that expected by chance for either 500 or 2000-
ms intervals, for any criterion value. We did not correct for
multiple comparisons across bin sizes and significance criteria.
The lack of a correction will increase our false positive rate.
However, this is a conservative choice since all 6 analyses yield
negative results. Taken together, our results indicate that if a
cell will become tuned, it will do so soon after the onset of
working memory. Note that there was some heterogeneity in the
time that cells became tuned, consistent with previous reports,
but that this heterogeneity was limited—all of the tuned cells
that were recorded developed their tuning within the first 2 s
of the memory period (Supplementary Fig. S5). These previous
studies used memory periods of just a few seconds, and so the
finding that few cells turn on after the first several seconds of
the memory period could easily be missed.

In contrast to our results, some previous studies find that
memory cells can alternate between putative on and off states
throughout the memory period (Baeg et al. 2003; Brody et al.
2003; Jun et al. 2010; Harvey et al. 2012). Many of these studies
used only a small number of predetermined memoranda. In
contrast, we collected data using a continuous circular array
of targets and then analyzed memory activity in response to
the targets that drove the cell most strongly. We asked whether
memory responses are different for optimal versus nonopti-
mal target locations (Fig. 6). We reasoned that with a target in
the flank of the preferred direction, even a modest drift could
cause a large variation in firing rate (see Supplementary Fig. S2).
Indeed, when strongly driven, cells turn on early and sustain
their activity throughout the memory interval, but, when driven
suboptimally by a target in the flanks of the preferred direction
(45 deg off the optimal position), the cell in Figure 6A does not
show tuning until relatively late in the trial and then appears to
turn on and off multiple times throughout the memory period.
The cell in Figure 6B turns on early, appears to turn off at 2.5 s,
and appears to turn back on for the last half of the memory
period. These examples are typical of our entire population;
targets that maximally drive memory activity show sustained
responses, whereas nonoptimal stimuli drive weaker, tempo-
rally inconsistent responses.

Memory Tuning Appears Robust During Early Memory

Though 80% of our cells lose their tuning during the memory
period, we aimed to confirm that they are classical memory
cells and would meet the criteria of prior studies of memory
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Figure 6. Memory responses appear to turn on and off over the course of the
memory period when driven suboptimally. Two example cells (A and B) with

well-behaved sustained memory responses are shown. Top traces show the
mean firing rate when memory targets are in the cell’s preferred direction,
compared with 180 deg away (null direction). Bottom traces show the mean firing
rate when the memory targets are at a flank 45 deg away from the preferred

direction, compared with 180 deg away. Each cell exhibits sustained responses
when driven optimally but fluctuates on and off when driven suboptimally.

activity. Memory activity is typically demonstrated by illustrat-
ing that directional tuning increases and remains above baseline
throughout the delay period (e.g., Fig. 3 from Funahashi et al.
1989; Figs 11 and 12 from Chafee and Goldman-Rakic 1998; Figs
1–4 from Clark et al. 2012). We replicated these analyses with
our population. As most other studies use substantially shorter
delays, we only considered the first 3 s of our delay period. Four
example cells with sustained tuning are shown in Figure 7A–D.
The first 2 cells exhibit an additional transient response when
the target appears. The next cell reaches a peak just as the target
is withdrawn. The fourth cell becomes active only after the
target disappears. Despite these differences, all 4 example cells
show sustained tuning over the first 3 s of the memory period.
Nonetheless, all 4 example cells turned off well before the end
of the 15 s memory period (Fig. 7A, 4.3 s; Fig. 7B, 4.1 s; Fig. 7C,
3.0 s; Fig. 7D, 7.6 s). All of our cells showed similar responses.
On average, activity is sustained over the first 3 s are clearly

evident (Fig. 2). Thus, our memory cells qualitatively resemble
those seen in previous studies.

We further validated that these neurons match the criteria
used in the literature for memory cells by confirming that an
ideal observer can use their activity to discriminate memory
targets in the preferred and null directions using the responses
from just a single trial. We computed time-resolved ROC AUC
over the initial 3 s of memory (compare with Fig. 2B from Clark
et al. 2012). All 4 example cells sharply increased discriminabil-
ity around the time of the stimulus, and maintained above-
chance discriminability over the initial 3 s of the memory period
(Fig. 7E–H). We show a histogram of AUC values for each cell,
computed 0.5–1.5 or 2–4 s after target onset (see Materials and
Methods). Generally, discriminability was well above chance
(median = 0.848; Fig. 7I). These analyses demonstrate that these
memory cells are very similar to memory cells recorded in the
many previous studies of memory in FEF and dlPFC.

Sustained Cells May Reflect a Distinct Population

We asked how the 19 sustained cells were related to the 74
nonsustained cells. We first determined the probability distri-
bution that describes mean turn-off times for the 74 cells that
turn off within 15 s. The distribution was best described by an
exponentially decaying function with a time constant of 5.4 s
(Fig. 8A). Mean turn-off times from 2.5 to 15 s account for 90% of
the area under the full distribution curve (Fig. 8B). The remaining
10% of the area indicates the expected proportion of mean turn-
off times in our sample that are part of this distribution but
exceed 15 s. Based on this distribution we expect 8.5 cells in our
sample of 93 to be sustained for at least 15 s (95% CI, 5–14 cells).
This is significantly fewer than the number we observe (n = 19).
This result suggests that at least some of the sustained cells
may be part of a different population. However, the proportion of
memory cells that may be part of a circuit with longer sustained
memory responses is small compared with the total number of
memory cells. Furthermore, sustained cells are indistinguish-
able from nonsustained cells during early memory—sustained

Figure 7. Memory cells are indistinguishable from those seen in previous studies. (A–D) Spike rasters and mean firing rate for 4 example cells in response to a target
presented in the preferred (“red”) or null (“green”) directions. Data are shown over the first 3 s of memory to match or exceed the durations used in many previous
studies. See Materials and Methods and Results for additional details and specific comparison studies. (E–H) Time resolved ROC AUC values for the 4 example cells in

(A–D). AUC values are computed using a sliding 500-ms window. (I) Distribution of ROC AUC values for the 93 memory cells. ROC AUC values are computed from 0.5
to 1.5 or 2 to 4 s after the target first turns on, depending on when the cell first became tuned (see Materials and Methods). Hatching indicates sustained cells, that is,
cells that did not turn off over the 15-s memory period (see Materials and Methods).
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Figure 8. Properties of sustained cells. (A) Fitted probability density exponential
distribution to mean turn-off times. The dark gray area represents cells that are

not sustained, that is, cells with mean turn-off times prior to 15 s. The light
gray area is the proportion of cells predicted to sustain activity for 15 s or more,
based on the distribution of nonsustained cells. (B) Cumulative distribution of
the function in (A). In total, 90% of the cells have mean turn-off times, indicating

a prediction that 10% sampled cells should have mean turn-off times later
than 15 s. Error bars show 95% CIs of the fit. (C) Anatomical distribution of
sustained cells for Monkey C. Each gray closed circle represents a location in
which one or more nonsustained memory cells were recorded. Black open circles

indicate the locations of sustained cells, with double black lines when 2 cells
were recorded at those coordinates. Dashed lines separate the region in and
around the principle sulcus (bottom left), from the arcuate sulcus (top right).
See Supplementary Figure S6. (D) Anatomical distribution of sustained cells for

Monkey W. Format is identical to (C).

cells have similar discriminability to nonsustained cells (Fig. 7I,
rank sums test, P = 0.66), as well as preferred direction firing rate
(P = 0.81), null direction firing rate (P = 0.95), and tuning strength
(P = 0.97). Cells that turned on earlier (0.5–1.5 s) were neither
more nor less likely to be sustained than cells that turned on
later (2–4 s; χ2 test, P = 0.81).

If some or all sustained cells form a separate population from
nonsustained cells, then they may be anatomically clustered.
To determine if this was the case, we examined the anatomi-
cal location of recorded cells for monkeys C and W (Fig. 8C,D,
respectively; also see Supplementary Fig. S6). Sustained cells
were not clustered but were instead distributed within and near
the principal and arcuate sulci, similar to the distribution of cells
that turned off.

Interestingly, 15 of the 93 cells (16%) showed visually evoked
or early memory tuning that was opposite in sign from the tun-
ing in the later intervals (Fig. 9; −6.1 sp/s ± 1.7 sp/s from 100 to
300 ms). These cells had similar tuning magnitudes as the other
78 cells later in the memory interval (oppositely tuned cells—
4.6 ± 0.4 sp/s; nonoppositely tuned cell—4.2 ± 0.7 sp/s). Seven of
these 15 cells (47%) were sustained and constitute a relatively
large proportion of all sustained cells (37%). Firing rate patterns
with opposite early and late tuning are consistent with certain
types of inhibitory interneurons that may be involved in spatial
memory circuits (Gabbott and Bacon 1996; Constantinidis et al.
2001; Constantinidis and Goldman-Rakic 2002; Wang et al. 2004;
Zhou et al. 2012; see also Lawrence et al. 2005). This finding sug-
gests that the inflated number of sustained cells compared with

Figure 9. Cells with opposite early and late tuning. (A) Example cell with early
tuning that is opposite in polarity from its late tuning. The highlighted time
interval (yellow) is the first interval (300–700 ms) of significant tuning (−2.5 sp/s,
P < 0.006). (B) Population activity of 15 cells, each of which shows significant

early tuning that is opposite in polarity from its late tuning. Opposite tuning
is generally driven by elevated activity for directions in the memory-interval
null direction (an upward deflection of the green curve showing the response

to a target in the null direction), rather than suppressed activity in the preferred
direction (red trace). Population tuning in these cells shows little or no decay
with time. (C) Population activity of cells that are not oppositely tuned in early
versus late time periods. Formats in (B) and (C) are each identical to Figure 2.

the number predicted by the analysis of Figure 8A could reflect
a separate population of sustained inhibitory interneurons.

Discussion
Previous studies of working memoryusing primarily short (e.g.,
1–3 s) memory periods found that mnemonic tuning is often
sustained for the entire memory period (Fuster and Alexander
1971; Kojima and Goldman-Rakic 1982; Bruce and Goldberg 1985;
Funahashi et al. 1989, 1993; Amit 1992; Pellegrino and Wise 1993;
Chafee and Goldman-Rakic 1998; Ferrera et al. 1999; Sommer and
Wurtz 2001; Umeno and Goldberg 2001; Takeda and Funahashi
2002, 2004). These findings inspired attractor network models
with stable, nondecaying memory states (Amit 1992; Brunel
1996; Amit and Brunel 1997; Compte et al. 2000; Wang 2009).
A subclass of attractor networks, a bump attractor network,
represents continuous memoranda such as spatial locations as
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a localized “bump” of elevated activity, whose amplitude and
shape can be sustained indefinitely without decay. In this study,
we sought to more thoroughly characterize spatial memory
tuning over longer memory delays (5–15 s) with respect to the
predictions of bump attractor network models.

We trained 2 nonhuman primate subjects to perform a
spatial working memory task with 5–15-s delay periods and
recorded single-unit activity from the FEF and the dlPFC while
the animals performed the task. Because the task memoranda
and behavioral responses were continuous, we could identify
the optimal target direction for each cell. We actively monitored
recorded cells to ensure good isolation over time. Our data
indicate that memory cells turn on (i.e., exhibit spatial tuning)
within the first few seconds of the memory period, remain active
for a variable but cell-specific period of time, and then turn off
(i.e., lose their tuning). Once turned off, cells do not regain their
tuning. Most cells (80% in our data) have mean turn-off times
shorter than our 15-s memory period.

Our conclusions stem from the observation that mean tuning
decreases by 55% over a 15-s memory interval. We considered 2
possible mechanisms for this gradual drop in activity—random
drift of the representation and gradual homogeneous decay. The
first possibility, random drift, was that noise can perturb the
state of a canonical bump attractor network, causing the bump
to move in a random walk (Compte et al. 2000). This drift varies
across trials, and as a result, we expect the spatial tuning curves,
which are computed across multiple trials, to lose amplitude and
widen over time (Supplementary Fig. S2). In our data, however,
tuning amplitude decayed much faster than would be predicted
by drift (55% decay by ∼12–15 s observed versus 15% decay
predicted after 15 s).

A second possible explanation for a drop in tuning is a bump
network that homogeneously decays with time as a conse-
quence of an imbalance between excitation and inhibition. We
asked whether the decay we saw was consistent with a decaying
bump network by modeling a network that decays at the same
overall rate as what we observed in our recordings (Fig. 5B).
In the model, the drop in tuning is progressive and similar
across all cells, even cells that have not turned off. Most model
cells turn off within a few seconds of each other. The decay
is apparent even when excluding model cells that have turned
off. Contrary to these predictions, we observed that individual
cells transitioned relatively quickly between distinct on- and
off-states (Fig. 5A) while mean turn-off times across cells were
broadly distributed. Cells that remained on modestly increased
in activity, which helps explain the difference between the drop
in the population’s tuning (55%) and the proportion of cells that
turn off (80%). Thus, while random drift may occur, it cannot
sufficiently account for the dynamics we observe.

Many studies show that single cells may ramp up or down
during the memory period (Brody et al. 2003; Jun et al. 2010;
Murray et al. 2017). Although not emphasized in our results,
we see similar ramping in our own data. For example, the third
panel of Figure 4C shows a cell with a clear upward ramp for ∼6 s,
and the fourth panel shows a cell with an upward ramp over ∼3 s
followed by a slow downward ramp over ∼10 s. Our finding of
cell-specific turn-off times compliments the prior finding that
cells show heterogeneous activity profiles, for example, upward
and downward ramps.

Other studies have suggested that individual cells may turn
on and off multiple times during a single memory period or
that individual cells involved in memory may turn on for brief
periods (10s of milliseconds) in the beginning, middle, or end

of a memory period (Baeg et al. 2003; Harvey et al. 2012). Some
of these studies have used stimuli that do not maximally drive
memory cells. Mouse studies, for example, typically do not
precisely map mnemonic fields. We show that testing with
suboptimal stimuli, that is, stimuli presented at positions on the
flanks of the preferred direction, can produce responses with
multiple transitions between on- and off-states. These turnings
on and off may reflect bump drift coupled with a steep slope of
the tuning curve on the flanks (Supplementary Fig. S2). Yet these
same cells show sustained activity when driven by an optimal
stimulus. We also found that once an optimally stimulated cell
turns off, it does not regain tuning later in the memory period.
Furthermore, cells that are not tuned in the first few seconds
of the memory period do not acquire tuning later. Thus, while
we see heterogeneous patterns of memory activity, for example,
ramping, which are consistent with many previous studies using
shorter memory periods, we also see consistent patterns that
previous studies did not detect. In particular, we see consistent
turn-off times ranging from 2 to 15 s, and we find that cells tend
to turn on early, stay on for many seconds, and do not regain
tuning once they have lost it (turned off).

To keep the animals on task over memory period of up
to 15 s, the animals received rewards mid-trial. A limitation
of this design is that these rewards may perturb the time
course of activity, perhaps even driving cells to turn off early.
Indeed, animals were more likely to break fixation after a
mid-trial reward (Supplementary Fig. S1), though a fixation
break does not necessitate a lapse in memory. Most of our
recording sessions did not have a mid-trial reward until 7.5 s
into the memory period, yet cells from these sessions often
turn off before that time. Furthermore, mean turn-off times
do not appear to be clustered around the times of mid-trial
reward, as would be expected if mid-trial rewards cause turn
off (Supplementary Fig. S7), and a reward-triggered average of
firing rates across cells also reveals no loss of turning specifically
associated with the reward (Supplementary Fig. S8).

While our results are novel, they nonetheless replicate the
main findings of earlier studies. As noted above, previous studies
describe memory cells as having activity that persists over the
course of a delay (Constantinidis et al. 2018). The fact that 80%
of our cells lose their tuning during the delay may suggest that
our cells represent a different population. However, the earlier
studies used substantially shorter delays—as little as 1 s (see
Introduction). When we consider only the first few seconds of
the delay, our memory cells are indistinguishable from those
described in the literature (Figs 2 and 7). It is only over much
longer delays that the gradual decay of these cells becomes
apparent. Furthermore, we do see cells with multiple on/off
cycles and other complex dynamics similar to those reported
previously (Baeg et al. 2003; Brody et al. 2003; Jun et al. 2010;
Harvey et al. 2012), but only in response to suboptimal stimuli.
Since the mnemonic fields of spatial memory networks appear
to completely tile space, looking only at the responses to a
small subset of stimuli (e.g., just 2 or 4 target locations) will
fail to correctly characterize the behavior of the network. The
complex dynamics that have been reported while using just a
small number of stimulus locations may reflect responses from
the flanks of the tuning curves and thereby mischaracterize
the true network dynamics. Alternatively, since many of these
responses were described in rodents, it is possible that this
reflects a species difference.

Our results help refine the leading models of working mem-
ory circuits. Qualitatively, the dynamics we report are more
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complex than bump attractor network models or decaying bump
network models, yet more constrained than proposed alterna-
tives such as reservoir network computational models (Maass
et al. 2002; Verstraeten et al. 2007; Appeltant et al. 2011; Bernac-
chia et al. 2011) or some feed-forward networks (Goldman 2009).
A parsimonious hypothesis would be that memory networks
consist of many weakly coupled recurrent subnetworks, such
as bump attractor networks, each with its own hard-wired time
constant. Early in the memory period more of these attractor
circuits may be active, but over time subnetworks progressively
“turn off.” Such a mechanism may help free up neural resources
so that they become available to encode new information. Alter-
natively, the turned-off cells may still participate in coding
the original information via activity–silent mechanisms (Stokes
2015). Future work should investigate the functional relevance
of these turn-off times and whether turn-off times serve as a
marker for the degree of coupling between neurons.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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