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Contralateral Limb Specificity for Movement Preparation in
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The canonical view of motor control is that distal musculature is controlled primarily by the contralateral cerebral hemi-
sphere; unilateral brain lesions typically affect contralateral but not ipsilateral musculature. Contralateral-only limb deficits
following a unilateral lesion suggest but do not prove that control is strictly contralateral: the loss of a contribution of the
lesioned hemisphere to the control of the ipsilesional limb could be masked by the intact contralateral drive from the nonle-
sioned hemisphere. To distinguish between these possibilities, we serially inactivated the parietal reach region, comprising
the posterior portion of medial intraparietal area, the anterior portion of V6a, and portions of the lateral occipital parietal
area, in each hemisphere of 2 monkeys (23 experimental sessions, 46 injections total) to evaluate parietal reach region’s con-
tribution to the contralateral reaching deficits observed following lateralized brain lesions. Following unilateral inactivation,
reach reaction times with the contralesional limb were slowed compared with matched blocks of control behavioral data;
there was no effect of unilateral inactivation on the reaction time of either ipsilesional limb reaches or saccadic eye move-
ments. Following bilateral inactivation, reaching was slowed in both limbs, with an effect size in each no different from that
produced by unilateral inactivation. These findings indicate contralateral organization of reach preparation in posterior parie-
tal cortex.
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Unilateral brain lesions typically affect contralateral but not ipsilateral musculature. Contralateral-only limb deficits following
a unilateral lesion suggest but do not prove that control is strictly contralateral: the loss of a contribution of the lesioned
hemisphere to the control of the ipsilesional limb could be masked by the intact contralateral drive from the nonlesioned
hemisphere. Unilateral lesions cannot distinguish between contralateral and bilateral control, but bilateral lesions can. Here
we show similar movement initiation deficits after combined unilateral and bilateral inactivation of the parietal reach region,
indicating contralateral organization of reach preparation. /

the lesion (Daroff et al, 2012). Increasing evidence suggests,

Introduction . ;
The canonical view of motor control is that distal musculature is  owever, that there may be latent control of the ipsilateral side as
well, in both frontal (Matsunami and Hamada, 1981; Tanji et al.,

controlled primarily by the contralateral cerebral hemispheres : k

(Fig. 1). Supporting this view is the fact that unilateral lesions fre- 1988; Donchin et al, 1998) gnd Pafletal areas (Chang' et al,

quently affect only body movements contralateral to the side of 200.8).' In hur.nan.s, fMRI studies 51m1.1arly ShOW clear bilateral
activity, albeit with a contralateral bias (Astafiev et al., 2003;

Connolly et al., 2003; Medendorp et al., 2005; Prado et al,,
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2005; Fernandez-Ruiz et al., 2007; Filimon et al., 2009;
Gallivan et al., 2009, 2011; Bernier and Grafton, 2010;
Cavina-Pratesi et al., 2010; Cappadocia et al., 2016). Likewise,
transcranial magnetic stimulation studies do not yield strict
contralateral limb specificity (Busan et al., 2009; Vesia et al.,
2010; Buetefisch et al., 2014). Arm movement kinematics can
be decoded from ipsilateral motor cortex (Ganguly et al,,
2009; Bundy et al., 2018). We aimed to reconcile bilateral
reach representations with contralateral but not ipsilateral
deficits after unilateral lesions.
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Figure 1.

Three architectures underlying contralateral deficits after unilateral brain lesions. Schematics for contralateral-
spedific (top row), hemispheric compensation (middle row), and interhemispheric competition (bottom row) models are
shown following a unilateral lesion (in this case, right PRR). The first three columns represent the visuomotor pathway in
their intact, unilaterally, and bilaterally lesioned states, respectively. Solid lines indicate intact pathways by which PRR affects
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We used these predictions to probe the
laterality of motor planning, an essential
part of motor control. The parietal reach
region (PRR) is a functionally defined por-
tion of the posterior parietal cortex (PPC)
in the macaque monkey comprising the
caudal portion of the medial intraparietal
area (MIP) and extending caudally into
dorsal V6a, whose neurons are active
when reaches are planned and executed

! T (Snyder et al., 1997; Bakola et al., 2017). At

; the population level, PRR is half as active

."‘ before a reach with the ipsilateral arm as it

is before a reach with the contralateral arm

(Chang et al., 2008; Mooshagian et al.,

2018). Ciritically, a unilateral lesion affects

only reaches with the contralateral arm

(Lamotte and Acuna, 1978; Brown et al.,
l 1983; Yttri et al., 2014).

-

In the current study, PRR was lesioned
Unilateral

Predicted
Lesion effect

Unilateral Bilateral

Unilateral Bilateral

first in one hemisphere and then in the
other, with behavioral testing before and af-
ter each lesion. Surprisingly, the second
lesion had no additional effect on the limb
contralateral to the first lesion. These results
strongly support the contralateral model
and indicate that PRR’s contribution to
motor planning is strictly contralateral.

Bilateral

reaching. Dashed lines indicate compromised pathways. Line width indicates the relative strength of these connections. Gray

hands represent normal reach performance. Black hands represent abnormal (slowed) reaches. Bar plots represent the pre-
dicted degree of impairment for each limb (black: contralateral to first lesion; gray: ipsilateral to first lesion) after unilateral

(left) and bilateral (right) lesions.

There are at least three architectures that could lead to purely
contralateral deficits after a unilateral lesion. Each hemisphere may
exert strict lateralized limb control (“contralateral” model).
Alternatively, control could be bilateral, but the ipsilateral contribu-
tion could be redundant (“compensation” model). In this model,
the loss of drive from the lesioned hemisphere that helps control
the contralateral limb may be partially compensated by the intact
secondary drive from the opposite hemisphere (Faugier-Grimaud et
al., 1978; Bartolomeo and Schotten, 2016). Alternatively, each hemi-
sphere could have a strict contralateral organization but also inhibit
the opposite hemisphere (“competition” model). This mutual
inhibition could be unbalanced by a small lesion in one hemi-
sphere, resulting in complete suppression of the damaged
hemisphere and a deficit specific to the contralesional limb
(Sprague, 1966; Hilgetag et al., 2001). A unilateral lesion does
not distinguish among strict lateralized limb control, bilateral
control with compensation, and cross-hemisphere inhibitory
interactions.

Each of these models makes a unique prediction about the
effect of a bilateral versus unilateral lesion. The strictly contralat-
eral model predicts that lesioning the second (opposite) hemi-
sphere will not affect the original deficit (Fig. 1, top: lesion effects
are shown as increases in reaction time (RT) compared with a
baseline, right column). By contrast, the compensation model
predicts that a second lesion will exacerbate the original deficit,
since it removes both the dominant contralateral drive plus the
covert ipsilateral drive (Fig. 1, middle). Finally, the competition
model predicts that the second lesion will restore hemispheric
balance and thereby ameliorate the effect of the first lesion (Fig.
1, bottom) (Sprague, 1966; Hilgetag et al., 2001).

Materials and Methods

Experimental model and subject details

Two adult, male macaque monkeys (Monkey
G, Macaca mulatta; and Monkey Q, Macaca fas-
cicularis) were tested. All procedures were in
accordance with the Guide for the care and use of laboratory animals and
were approved by the Washington University Institutional Animal Care
and Use Committee.

Behavioral tasks

Animals sat in complete darkness with their heads restrained in custom-
made primate chairs (Crist Instruments). The fronts of the chairs could
open from waist to neck so that the forelimbs had complete freedom of
movement. Visual stimuli were back-projected onto a translucent
Plexiglas screen mounted vertically ~17 cm in front of the animal. Eye
movements were monitored with a scleral search coil (CNC
Engineering). Hand position was recorded every 2 ms with 3.5 mm reso-
lution using an optical touch screen.

Monkeys performed memory-guided center-out reaching and sac-
cade tasks (Fig. 2a). Reaches were made with either the left or right limb
in alternating blocks. The unused limb was blocked by a Plexiglas panel.
For all tasks, trials started with the animal fixating and touching a central
fixation cue (5.5° window for the eye, 6° for the hand). After a 350 ms
fixation period, a peripheral target flashed for 150 ms at 1 of 8 equally
spaced locations 20° from the fixation point. The target position
instructed the location. The target color instructed the type of movement
to make: red instructed a saccade; green instructed a reach; half green,
half red instructed a coordinated reach. After a subsequent 1000-
1600 ms delay, the fixation target was extinguished, cueing the animal to
move. On “saccade only” trials, the animal had 500 ms to make a saccade
to within 10° of the remembered target location; 150 ms after the eyes
acquired the peripheral window, the target reappeared and a corrective
saccade to within 5° was required. Each animal performed different var-
iants of the reach task. Monkey Q performed a “coordinated reach” task,
wherein the animal made a combined reach plus saccade, with the arm
arriving within 10° of the target no later than 250 ms after the saccade;
150 ms after the initial landing of the hand in the peripheral window, the
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Figure 2. Task design. a, Memory-guided saccade and coordinated saccade-reach tasks. After an initial fixation and reach period, a target appeared briefly at 1 of 8 peripheral locations
arranged in a circle around the initial fixation and reach point. The target location instructed the movement goal, and the color instructed movement type: green represents reach; red repre-
sents saccade (color not shown in figure); half green, half red represents a coordinated reach. After a variable delay period, the central fixation point disappeared, cueing the animal to make
the instructed movement to the remembered target. Saccade-alone trials were randomly interleaved with either dissociated (Monkey G) or coordinated (Monkey Q) reach trials. b, Injection
localization. Top, Schematics indicating approximate slice positions and sulcul anatomy for a representative PRR injection in Monkey Q. IPS, Intraparietal sulcus; LOP, lateral occipital-parietal
area; Midline, longitudinal fissure; POS, parieto-occipital sulcus; STS, superior temporal sulcus. Bottom, Slice reconstruction of an example injection. MRI sections through the coronal plane
(left), and axial plane (right) shows the injections as bright white halos on the medial bank of the IPS in hoth hemispheres. ¥ and Z values indicate the slice distance in millimeters caudal to
the AC (coronal slices) and dorsal to the AC-PC plane (axial slices). Scale bar, 5 mm. ¢, A complete reconstruction of individual injection sites from Monkey Q aligned and superimposed on a rep-
resentative horizontal MR image plane. Each injection site is represented by a 1-mm-diameter circle, and all sites are summed. Colors represent greater overall overlap of individual halos, rang-
ing from 1 (yellow) to 14 (blue). Scale bar, 5 mm.
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target reappeared and a corrective saccade to within 6.0° and a corrective
reach to within 6.5° was required. Monkey G performed a “dissociated
reach” task wherein the animal reached while maintaining fixation at the
central cue. These trials were performed in the same manner as coordi-
nated reaches, but the animal maintained visual fixation. If the animal
failed to perform a trial, the trial was aborted, reward was withheld, and
a 1 s timeout ensued. Data collection was completed within 2.5 h of the
first inactivation, well within the period of maximum efficacy for musci-
mol (Arikan et al., 2002).

Reversible inactivation. PRR was initially localized by using single-
unit recordings. We identified PRR as that region of cortex containing a
high proportion of visually responsive cells with delay-period activity
that was greater for reach-only or reach-plus-saccade trials than for sac-
cade-only trials. This region includes the posterior portion of MIP, the
anterior portion of Vé6a, and portions of the lateral occipital parietal
area. Injections sites were chosen to minimize spread beyond PRR’s
boundaries. Injection spread was established by coinjecting manganese
with the muscimol and imaging the animals shortly after the conclusion
of the experiment (Liu et al., 2010). Injections were aimed at the poste-
rior portion of the medial bank of the intraparietal sulcus near the MIP/
Vé6a border. The diameters of the injection volumes reached ~5-6 mm
in diameter (see Injection localization with MRI) (Fig. 2b,c). To mini-
mize tissue damage, sites were varied by 1-2 mm across sessions. The
precise location of this border varies across studies in the literature so
that definitive assignments of individual recording sites to one anatomic
area or another are difficult to make (Lewis and Essen, 2000; Tanné-
Gariépy et al., 2002; Bakola et al.,, 2017).

Each inactivation proceeded as follows: an injection cannula was
slowly lowered to the desired position and allowed to settle for 10 min.
Next, 0.5-2.0 pl of 8 mg/ml muscimol plus 0.1 M of the MRI contrast
agent manganese (9.8 mg/ml MnCl,(H,0)4) was injected through a 33 G
cannula (Small Parts) attached to a 25 ul Hamilton syringe driven by a
microinjection pump (Harvard Apparatus) at a rate of 0.05-0.15 pl/min
(10-15min). To minimize the occurrence of upward flow of injectate
with cannula retraction, the cannula was left in place for 10 min after the
completion of the injection and then slowly retracted. Next, the behav-
ioral test block commenced (~30min). After the behavioral task block,
the process (inactivation and behavioral block) was repeated for the PRR
of the opposite hemisphere. Monkey G participated in 7 sessions, and
Monkey Q participated in 16 sessions. The order of left and right hemi-
sphere lesions changed across experimental sessions. Right PRR was
inactivated first in 14 sessions (Monkey Q =9, Monkey G =5), and left
PRR was inactivated first in 10 sessions (Monkey Q =7, Monkey G = 3).

Inactivation and control sessions differed only by whether a musci-
mol-manganese or sham injection was performed. For control sessions,
the injection drive was mounted to the monkeys” head and the microin-
jection pump was turned on, but the cannula was not lowered into the
brain. Saline injections were not used for two reasons. First, the nonle-
sioned hemisphere serves as the control after unilateral inactivation.
Second, since we were not specifically interested in the pharmacologic
effects of muscimol, any perturbations of PRR activity, including, for
example, volume effects, would constitute a legitimate test of our hy-
pothesis (though our small, slow injections were unlikely to generate
such effects). Control sessions were identical to inactivation sessions in
number of trials, time of day, duration, and tasks performed. Control
sessions never occurred the day following inactivation to avoid possible
aftereffects of the previous inactivation.

Injection localization with MRI. T1-weighted anatomic images were
collected within 2-4 h of each injection using an MPRAGE sequence
(FOV, 160 x 160 mm? matrix size, 320 x 320; slice time echo, 3.94 ms;
TR, 1.89 s; inversion time, 1 s; flip angle, 7°; 80 slices; 0.50 x 0.50 x 0.50
mm voxels) conducted on a 3T head-only system (Siemens Allegra). A
single surface coil was used. Animals were lightly sedated with ketamine
(3 mg/kg) during the procedure. Injections were visible as a bright halo
representing the Mn-induced T1 signal increase (Fig. 2b).

Permanent lesion. Permanent lesions more closely mimic the effects
of naturally occurring lesions and ensure a more complete lesion. They
cannot be repeated within the same animal and almost certainly are
accompanied by long-term adaptation. Temporary lesions can be
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repeated in the same animal multiple times, and their transient nature
minimizes long-term adaptive changes in the brain (Chowdhury and
DeAngelis, 2008). Thus, both types of lesions have experimental advan-
tages. After completing the reversible inactivation experiments, we per-
formed permanent lesions in one animal (Monkey G) with ibotenic acid,
an excitotoxin. Like muscimol, ibotenic acid spares fibers of passage,
ensuring that the lesion effects reflect the loss of PRR neurons and not
fibers of passage. We permanently lesioned left and right PRR in separate
sessions separated by 1 week. In each session, a 15 mg/ml solution of ibo-
tenic acid plus manganese (19.8 mg/ml MnCl,(H,0),) was injected
through a 32 G Hamilton needle attached to a 10 pl Hamilton syringe.
The injection procedure was the same as that for muscimol inactivation.
Behavioral data were collected following each permanent lesion. Data
from the day of the lesion were excluded from analysis.

Data processing

Saccade movement onset and offset were defined by velocity criteria.
Reach movement onset and offset were defined by the change in touch
position. Movement accuracy was quantified as the Euclidian distance in
degrees of visual angle between the mean movement endpoint and the
target location. Errors could be temporal (movement before or after the
allotted period, or failure to maintain fixation at the location of the pe-
ripheral target for at least 150 ms) or spatial (movements landing >10°
away from the remembered peripheral target location, or failure to make
a corrective movement to the peripheral target location after it reap-
peared at the end of the trial). Errors that occurred before the initial tar-
get appearance were excluded.

Behavioral data from each inactivation session were compared with
the data from the two previous control sessions. The significance of inac-
tivation effects across sessions was computed using a paired two-tailed
Student’s f test. A one-way ANOVA was used to assess whether move-
ment initiation depended on target direction (0°, 45°, 90°, 135°, 180°,
225°, 270°, 315° relative to the positive x axis). A repeated-measures
ANOVA with the factors target direction and injection (first, second)
was used to study the effect of target direction after each inactivation. A
t test was conducted to assess whether movement initiation depended on
hemifield (contralesional vs ipsilesional). Targets presented along the
vertical meridian (90°, 270°) were excluded for this analysis. The « level
for all tests was p < 0.05, and all tests were two-sided, unless otherwise
noted. RT values are reported as the mean RT during inactivation minus
the mean RT during control sessions. Positive values reflect slowing, and
negative values reflect speeding, of RT during inactivation compared
with control conditions. Values were computed similarly for saccade RT.
Endpoint accuracy was expressed as the Euclidian distance between the
target and the mean endpoint. Endpoint precision was expressed as the
SD of the Euclidian distance of each endpoint from the mean endpoint.

No statistical methods were used to predetermine the sample size,
but the numbers of monkeys used for these experiments are comparable
to those used in the field and in previous studies. Data collection and
analysis were not performed in a manner blind to the conditions of the
experiments. Both animals performed all tasks and were not randomly
assigned to a specific experiment group.

Results
We serially inactivated PRR in each hemisphere of 2 monkeys
(23 experimental sessions, 46 injections total; 7 sessions for
Monkey G and 16 for Monkey Q) to evaluate PRR’s contribution
to the contralateral reaching deficits observed following lateral-
ized brain lesions (Fig. 2b). Following each inactivation, monkeys
performed center-out memory-guided saccades and reaches
(Yttri et al.,, 2013) (Fig. 2a). When reaching, one animal moved
its eyes along with its arm (“coordinated reach”), while the other
animal maintained central fixation (“dissociated reach™).
Following unilateral inactivation, reach initiations with
the contralesional limb were slowed compared with matched
blocks of control behavioral data (both: 7.2ms, t»y=3.12,
p=001; G: 10.8ms, t=1.86, p=0.11; Q: 5.6ms, f,s=2.59,
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0
Z-scored RT

PRR lesion effects on response time are contralesional. a, Change in RT following unilateral inactivation versus control. Blue and green circles represent the individual ses-

sion values for Monkeys G and Q, respectively. Symbols for values =40 ms or <<—25 ms are displayed at 40 or —25 ms, respectively, for display purposes only. Horizontal lines indi-
cate condition means. Vertical lines indicate SEM. b, Same as in a following bilateral inactivation. Red symbols represent the two arms combined. For bilateral inactivation,
“contralesional limb” refers to the limb contralateral to the first injection, and “ipsilesional limb” refers to the limb ipsilateral to the first and contralateral to the second injection. ¢,
Shift in the distribution of RTs following unilateral inactivation for the contralateral (top) and ipsilateral limb (middle) and following bilateral inactivation for both limbs (bottom). RT
values increase from left to right. Thin (control) and heavy (inactivation) lines indicate the distribution of RTs, z-scored to the control data (vertical black line indicates the median
RT). In the contralateral and bilateral cases, the heavy traces fall to the right of the light traces. Effects are small but consistent across the range of RTs. d, Polar plot of the change in
RT for reaches with the contralateral (black) or ipsilateral limb (gray) to each of 8 equally spaced locations 20° from the fixation point following unilateral and both limbs averaged
(red) after bilateral inactivation. Contralesional targets are displayed on the right, and ipsilesional targets are displayed on the left. The innermost dashed circle (0 ms) represents no

effect. Filled data points represent significance (p << 0.05, ¢ test, uncorrected).

p=0.02, paired ¢ test; Fig. 3a). There was no effect of unilateral
inactivation on the RT of either ipsilesional-limb reaches (both:
14ms, =067, p=044; G: 50ms, f=029, p=0.78;
Q: 0.8 ms, #(;5=0.32, p=0.75) or saccadic eye movements (both:
0.1ms, f32)=0.04, p=0.95 G: 3.1ms, t=069 p=053; Q
—1.2ms, ;5 = —0.53, p=0.63). Effects were similar for lesions
on the right or left (e.g., slowing of the contralesional limb by 6.0
vs 47ms for 8 and 14 sessions, respectively; p of the
difference = 0.46). These findings are consistent with previous
studies (cited above).

In contrast to many other inactivation studies, we next placed
a second lesion in the homotopic area of the opposite hemi-
sphere and then collected additional behavioral data. After a
lesion is placed in each hemisphere, both limbs are contralateral
to a reversible lesion. We therefore report the result for bilateral
lesion analyses for each arm separately, as well as combined. The
terms “ipsilesional limb” and “contralesional limb” refer to the
limb with respect to the side of the first injection. Following
bilateral inactivation, reaching was slowed when data from the
limbs are combined (both: 7.2 ms, f(45=2.91, p=0.01; Fig. 3b).

Both dissociated (G: 14.3ms, f;3=1.92, p=0.08) and coordi-
nated reaches were slowed (Q: 4.1 ms, f;3;)=3.16, p <0.01),
and in each case the slowing was no different from that pro-
duced by unilateral inactivation (p=0.60 and p=0.57,
respectively). In none of our three scenarios did we predict a
difference in effects in the two arms (Fig. 1). We found com-
parable slowing in each (8.5 vs 6.0 ms, respectively, for the
arm contralateral to the first and the second injection; not
significantly different [f44)=0.49, p=0.63]), although the
effects reached significance in only one arm (t(,)=2.57,
p=0.02 vs ty=1.59, p=0.13, respectively). There was no
effect of bilateral inactivation on the RT of saccades (both:
2.4ms, fy)=1.12, p=0.28; G: 5.7ms t=1.2, p=0.28 Q:
0.9ms, £15)=0.41, p = 0.69).

Figure 3¢ shows normalized RT distributions for inactivation
(heavy traces) versus control trials (thin traces). RT values
increase from left to right. In all cases, the RTs are slowed follow-
ing inactivation. The RT slowing was evenly distributed across
all reaches, rather than being restricted to one tail of the distribu-
tion (Fig. 3c). This pattern of effects suggests that PRR
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inactivation affects only the contralesional limb (Fig. 1, top row),
and argues against the compensation and competition models
(Fig. 1, middle and bottom rows).

The effect size, as quantified by Cohen’s d, that is, normalized
to the SD of the difference, was 0.21 after unilateral inactivation
(contralesional limb) and 0.20 after bilateral inactivation. These
effect sizes are small but nontrivial, and they are 2-4 times as
large as those for the ipsilesional limb after unilateral injection
(0.08) or for saccades after unilateral or bilateral injection (0.05
and 0.06, respectively).

Slowing was significantly greater for the contralesional
compared with the ipsilesional limb in 10 of 23 experiments
and significantly greater for the ipsilesional limb compared
with the contralesional limb in 2 (p <0.05, t test). After the
second injection, both arms were significantly slowed in 10
of 23 experiments, with 2 showing speeding (p <0.05, ¢
test).

Lesion effects did not depend on the spatial location of the
target of the movement. A repeated-measures ANOVA on
Animal (G, Q) x Injection (first, second) X Arm (contralesional,
ipsilesional) x Direction (0°, 45°, 90°, 135°, 180°, 225° 270°,
315°) showed a main effect of Arm [F(; ;9)=5.37, p=0.03], but
no other main effects or interactions. Figure 3d depicts the mean
effect of inactivation on RT for reaches to each of the eight target
locations for each limb. Reach initiation with the contralesional
limb was slowed, independent of target location (F7,147)=0.99,
p=0.4, one-way ANOVA; p<0.05 for six of eight directions,
one-tailed f test). Reach initiation with the ipsilesional limb, by
contrast, was neither slowed down nor sped up for any target
location (F7,147)=0.40, p=0.90, one-way ANOVA; p>0.25 for
each individual location, ¢ test without multiple-comparisons
correction). After bilateral inactivation, reach initiation was
slowed (F(7,147)=0.59, p=0.77, one-way ANOVA; p < 0.05 for
five of eight locations, t test without multiple-comparisons cor-
rection). More power can be obtained by averaging over targets
in the contralateral versus ipsilateral hemifields, yet in no case
did reach initiation depend on the hemifield of the target (Table
1). These results justify the pooling of data across animals and
target directions.

Reach accuracy was not significantly affected by these injec-
tions (Fig. 4a,b). There was no significant effect on speed after ei-
ther the first or second injection. There was a tendency toward
hypometria and an overall upward shift, neither of which was
significant. Effects on endpoint dispersion (the inverse of preci-
sion) approached significance for reaches with the contralesional
but not ipsilesional limb (p=0.11 and p=0.31, respectively)
after unilateral inactivation. There was a small but significant
increase in endpoint dispersion after bilateral inactivation
(p=0.02) (Fig. 4c).

After unilateral inactivation, there was an ensemble effect of
target direction on saccadic eye movements in the pure saccade
task (F(7,147)=2.5, p=0.02, one-way ANOVA), but this was
not significant for any single direction compared with control
(all p>0.15, paired ¢ test). The ensemble effect was unchanged
by bilateral inactivation [repeated-measures ANOVA, target
direction: F(;147)=5.34, p=0.02; injection x target direction
(F(7,147)=0.48, p=0.85)]. There was no effect of inactivation on
coordinated saccades, that is, saccades accompanying the reach
(repeated-measures ANOVA, all p>0.1).

Effects of permanent lesions
After completing the temporary inactivation experiments, we
conducted permanent lesions in Monkey G to match the effects
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Table 1. Mean RT changes versus control by visual hemifield”

Contralesional Ipsilesional p value of
Lesion Arm field field difference
Both animals
Unilateral Contralesional arm 8.99% 7.10% 0.67
Unilateral Ipsilesional arm 3.25 5.47%% 0.54
Bilateral Contralesional arm 9.69* 10.93** 0.77
Bilateral Ipsilesional arm 8.19% 5.06 0.56
Bilateral Both arms 8.94% 7.92%* 0.77
Monkey G
Unilateral Contralesional arm 19.84* 13.01 0.57
Unilateral Ipsilesional arm 3.65 9.23 0.55
Bilateral Contralesional arm 21.09%* 20.85 0.98
Bilateral Ipsilesional arm 12.68 13.90 0.94
Bilateral Both arms 16.89** 17.37 0.97
Monkey Q
Unilateral Contralesional arm 3.93 434 0.92
Unilateral Ipsilesional arm 3.07 3.72 0.85
Bilateral Contralesional arm 437 6.30% 0.61
Bilateral Ipsilesional arm 6.10% 0.94 0.13
Bilateral Both arms 5.23% 3.51%* 0.34

“RT values are shown in milliseconds. For bilateral inactivation, “contralesional limb” refers to the limb con-
tralateral to the first injection, and “ipsilesional limb” refers to the limb ipsilateral to the first and contralat-
eral to the second injection.

*p << 0.05 (one-tailed ¢ test).

**p < 0.10 (one-tailed, ¢ test).

of naturally occurring lesions more closely. Results corroborated
those from the temporary inactivations (Fig. 5). The unilateral
lesion significantly increased contralesional limb RT (5.2ms,
p=0.003). There was no effect on saccades (—1.2ms, p=0.32;
data not shown) or ipsilateral reach RT (2.4ms, p=0.2). After
the bilateral permanent lesion, the slowing of the two limbs
(5.1 ms, p=0.002) was not significantly different from the unilat-
eral lesion effect on the contralesional limb (p =0.98), consistent
with a strict contralesional contribution from PRR. We con-
firmed the lesion sites postmortem (Fig. 5b). Lesions were largely
restricted to the medial bank of the intraparietal sulcus, extend-
ing posteriorly into V6a, with only minimal spread across the
sulcus into caudal intraparietal sulcus.

Discussion

Our sequential bilateral lesion results indicate that PRR contrib-
utes primarily to the planning of movements with the contralat-
eral limb. This provides new insight into motor planning in the
PPC. The cortical control of contralateral limb movements is a
main organizing principle of primate motor systems. Yet there is
substantial evidence that control is not exclusively contralateral,
particularly in frontal cortex. There are neurons in supplemen-
tary motor area, premotor cortex, and M1 that are active during
ipsilateral limb movements (Matsunami and Hamada, 1981;
Tanji et al., 1988; Donchin et al., 1998), and arm movement kine-
matics can be decoded from ipsilateral motor cortex (Ganguly et
al,, 2009; Bundy et al., 2018). In the PPC, most studies test only
movements of the arm that is contralateral to the side of record-
ing. Single-unit recording studies that have tested both arms
indicate a strong contralateral bias (Kermadi et al., 2000; Chang
et al., 2008; Mooshagian et al., 2018).

The current study provides strong evidence that ipsilateral
limb movements are represented in PRR, but that PRR does not
contribute to ipsilateral limb planning. This finding was presaged
by the findings that unilateral inactivation only affects the con-
tralateral arm (Yttri et al., 2013, 2014), and that PRR activity pre-
dicts reach RT, but only for the contralateral limb (Snyder et al.,
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2006; Chang et al., 2008). A similar dis-
tinction between the laterality of repre-
sentation and causal control has been
reported in other cortical areas
(MacAvoy et al, 1991; Gottlieb et al,
1994).

A possible alternative explanation for
intact ipsilateral function after unilateral
inactivation is compensatory effects from
homotopic tissue in the opposite hemi-
sphere (Wilke et al, 2012). In this
account, paired lesions in both hemi-
spheres should produce more severe defi-
cits (e.g., greater RT slowing) compared
with a unilateral lesion (Fig. 1).
Alternatively, the interhemispheric
competition hypothesis posits tonic
inhibition between left and right cor-
tex that is disrupted by unilateral
lesions (Kinsbourne, 1977). In this
account, a second lesion to the oppo-
site hemisphere should restore inter-
hemispheric balance and thereby
ameliorate the effects of unilateral
inactivation. We find that rather than
exacerbating or ameliorating the effect
of a unilateral lesion, a second lesion
in the opposite hemisphere has no
additional effect on the arm contralat-
eral to the first lesion, consistent with
the interpretation that PRR causally
effects only the contralateral limb.

In our hands, inactivation affects
mainly changes in RT. This contrasts
with other studies finding no change
in RT (Hwang et al., 2012; Christopoulos
et al,, 2015). We also find a tendency to-
ward hypometria, but this was not signif-
icant and did not depend on whether
reaches were coordinated or dissociated.
Little or no effect on amplitude or accu-
racy is consistent with previous observa-
tions from these same animals using
similarly sized unilateral injections (Yttri
et al,, 2014) but contrasts with reports of
hypometria for reaches in all directions
after larger injections (Hwang et al,
2012) or after removal of a large swath
of cortex (Brodmann’s areas 5 and 7)
(Lamotte and Acufa, 1978). The di-
fferences between this and previous
studies may be partly attributable to
task design. Previous studies inactivated
only one hemisphere and examined only
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Figure 4. Reach accuracy and predision. a, b, Reach accuracy, that is, the average constant error computed across individual

reaches and sessions, for each monkey (rows), and for each arm (columns). a, Data are rotated so that targets are all aligned
before averaging to test for consistent hypometria/hypermetria. Errors to the left represent hypometric reaches. b, Same data
as in a, but reach endpoints are averaged without rotation to test for overall biases in each direction. When split by arm (left
and right; columns), by location relative to the lesion (ipsilesional [hollow red], contralesional [filled red], or both [blue]), and
by monkey (rows), by target laterality (right or left visual hemifield; data not shown), only one condition showed a significant
horizonal effect of the injection with a p << 0.01 (not corrected for multiple comparisons; correction would eliminate the signifi-
cance), and there were no consistent trends. Two significant vertical effects are shown, both in Monkey Q; the significant hori-
zontal effect occurred when the data were split by hemifield, doubling the number of comparisons. The SEs of the endpoints
were large, particularly for the animal performing dissociated reaches, so it is possible that small but significant effects might
emerge with more data. ¢, Reach dispersion, quantified as the SD of reach endpoints from the mean. Contralesional arm after
the first injection (left), ipsilesional arm after the first injection (middle), and both arms after bilateral injection (right). Gray
bars represent the SD of reach endpoints (variable error) for each of the 8 movement directions (experimental — control) in
degrees. Red bars represent the mean effect across all movement directions. Target position is counterclockwise from the posi-
tive x axis (e.q., 45 degrees is up and to the right). *p < 0.05. *p < 0.01.

slowing after bilateral inactivation did not reach significance;

contralateral arm performance (Hwang et al., 2012) or both con-
tralateral and ipsilateral arm performance (Yttri et al., 2014), and
in one instance, inactivated both hemispheres, but on separate
days, and without repetition (Battaglia-Mayer et al., 2013). Here,
we made within-subject, within-session comparisons to evaluate
the differential effects of unilateral and bilateral inactivation on
limb specificity. Each inactivation served as its own control. We
might have expected bilateral inactivation to result in equal slow-
ing of the ipsilesional and contralesional limbs. Ipsilesional limb

however, the contralesional and ipsilesional limb effects after
bilateral inactivation were not different from one another.

The 2 animals in our study performed different reaching
tasks. Monkey G performed a dissociated reach task requiring
central visual fixation during the reach, while Monkey Q was
required to pair a saccade with each reach. It is conceivable that
the two tasks might have been differentially affected by PRR
inactivation. However, the differences observed between the
tasks/monkeys were few and unsystematic. Most results were
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Figure 5.  Permanent lesion effects. a, Mean change in RT for reaches with the contralateral
(black, left) and ipsilateral limbs (gray, middle) after a unilateral permanent lesion, and after bilat-
eral permanent lesions (black, right). Asterisks indicate significant slowing compared with control
sessions. b, Coronal section through PRR showing the location of each ibotenic acid lesion, shown
within the black boxes. Extent of damaged tissue on the left is limited to about halfway down
the medial wall of the IPS, although some gliosis because of the electrode tracks is visible above
the lesion. The lesion on the right involves the mirror symmetric location. In each case, the lesion
extends through most layers of the cortex. With the second lesion, there was some damage to
the gyrus of the superior parietal lobule. Inset, approximate slice position.

qualitatively, if not quantitatively, similar. For instance, response
times were slowed in both animals, but the effect was only signif-
icant in Monkey G. The magnitude of slowing was approxi-
mately twice as large in Monkey Q. Future studies should assess
these task differences across multiple animals.

Our conclusions contrast with some findings from stroke
patients in whom a compensatory role of the contralesional
hemisphere is supported (Murase et al., 2004; Johansen-Berg,
2007; Umarova et al., 2011). The discrepancy could reflect spe-
cies differences, the fact that clinical lesions are typically heterog-
enous and span multiple cortical regions as well as white matter,
or the fact that we test immediately after the lesion, whereas
patients are often tested months or even years after the insult
(Corbetta et al., 2005; Balan et al., 2019). Our findings also con-
trast with functional imaging studies in monkeys that suggest
rapid reorganization of the intact hemisphere after unilateral
inactivation of the lateral intraparietal area (LIP) (Balan and
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Gottlieb, 2009; Wilke et al., 2012). This may not be surprising,
however. Eye movement control in the cortex is organized in a
fundamentally different way from arm movement control. Most
cortical oculomotor areas, including LIP, influence both eyes
equally but drive movements only in the contralateral direction.
In contrast, many cortical somatomotor areas are biased to con-
trol body parts on the opposite side of the body and can drive
those body parts in any direction. Given this large difference in
organization, it is not unreasonable that rapid reorganization in
response to lesions might also be different in LIP versus PRR.

There are some important limitations of the current study.
The magnitude of the RT slowing (5-10 ms) is modest. Behavior
can become automated and stereotyped with overtraining, which
may explain why lesions produce only a slight impairment.
Furthermore, brain plasticity or changes in connectivity may
occur with extensive practice (Chowdhury and DeAngelis, 2008;
Wilke et al., 2012). Of course, it is difficult to perform these
experiments in animals that have not been extensively trained.
We used small injection volumes (0.5-2 ul) to minimize spread
into neighboring areas. In comparison, other studies have used
volumes up to fivefold larger and obtained larger effect sizes than
what we report, including prominent hypometria, though these
studies tested only the contralateral limb (e.g., Hwang et al,
2012). Larger injections may produce larger effects, particularly
regarding contralateral limb hypometria, where we saw only a
nonsignificant trend. It also remains to be seen if, and how, reor-
ganization occurs in the long-term after cortical lesions. Reach-
related activity in the PPC is found in neurons throughout an
extended network of parietal areas (Battaglia-Mayer and
Caminiti, 2009). We only tested one cortical region implicated in
reach planning, and our results may not generalize to other
reach-related areas. The organization may be different, for exam-
ple, in frontal motor areas, where individual neurons are known
to encode bimanual reach and participate in online control of
reaching (Donchin et al., 1998).

PRR is functionally defined and includes neurons that exhibit
clear visual responses to visual targets and sustained delay activ-
ity before reaching movements (Snyder et al., 1997). Inclusion in
PRR is not limited to neurons from a particular anatomically
defined area, and instead comprises neurons crossing anatomic
boundaries (see Materials and Methods). Other authors have
defined PRR differently, for example, as lying further anterior on
the medial bank in area 5 (e.g., Hwang et al., 2012). The precise
human homolog of PRR is not known, but functional imaging
studies have identified reach planning activity in superior pari-
eto-occipital cortex (putative V6a homolog) using functional
imaging (Astafiev et al., 2003; Connolly et al., 2003; Medendorp
et al., 2005; Cappadocia et al.,, 2016). TMS over PPC revealed
hand preference in medial intraparietal sulcus, but not in the
more posteriorly located superior parieto-occipital cortex (Vesia
and Crawford, 2012). Injection locations were concentrated in a
restricted area of MIP. We did not vary injection location over
the extent of MIP to investigate any gradient of effects along
MIP. It therefore remains to be seen whether our results hold
across all PPC reach-related regions.

Distal hand musculature is believed to be under almost exclu-
sive contralateral cortical control, especially compared with
proximal and axial muscles (Brinkman and Kuypers, 1973). Our
task design used a center-out arm movement that engaged proxi-
mal and axial musculature as well as distal muscles. It is possible
that still more proximal movements might show bilateral con-
trol. More generally, we cannot be certain that a different task
might not yield different results. For example, control might
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differ with bilateral movements. Indeed, one study found
impaired visual control of hand movements after bilateral, but
not unilateral, PRR inactivation (Battaglia-Mayer et al., 2013).
Nevertheless, our results clearly indicate that, for at least some
reaching tasks, PRR controls only the contralateral limb,
although ipsilateral arm movements can be decoded from PRR
activity.
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