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a b s t r a c t 

Resting-state functional MRI (rsfMRI) provides a view of human brain organization based on correlation patterns 

of blood oxygen level dependent (BOLD) signals recorded across the whole brain. The neural basis of resting- 

state BOLD fluctuations and their correlation remains poorly understood. We simultaneously recorded oxygen 

level, spikes, and local field potential (LFP) at multiple sites in awake, resting monkeys. Following a spike, the 

average local oxygen and LFP voltage responses each resemble a task-driven BOLD response, with LFP preceding 

oxygen by 0.5 s. Between sites, features of the long-range correlation patterns of oxygen, LFP, and spikes are 

similar to features seen in rsfMRI. Most of the variance shared between sites lies in the infraslow frequency band 

(0.01–0.1 Hz) and in the infraslow envelope of higher-frequency bands (e.g. gamma LFP). While gamma LFP and 

infraslow LFP are both strong correlates of local oxygen, infraslow LFP explains significantly more of the variance 

shared between correlated oxygen signals than any other electrophysiological signal. Together these findings are 

consistent with a causal relationship between infraslow LFP and long-range oxygen correlations in the resting 

state. 
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. Introduction 

BOLD signals from resting humans, non-human primates, and ro-

ents exhibit infraslow (0.01 - 0.1 Hz) fluctuations that are highly cor-

elated among spatially distant regions. The pattern of these correla-

ions contains reproducible inter-regional groupings, or networks, that

end to co-fluctuate during tasks ( Fox et al., 2005 ; Gorges et al., 2017 ;

a et al., 2016 ; Raichle et al., 2001 ). Resting-state BOLD network struc-

ure shows subtle, apparently functionally significant, variation among

ndividuals and between control and patient populations ( Peer et al.,

017 ). However, resting-state BOLD networks do not strictly correspond

o any known pattern of anatomical connectivity between neurons, and

heir neural bases and functional roles (if any) remain unclear. 

Much evidence indicates that infraslow BOLD signal correlations

omprising resting-state networks reflect correlated infraslow fluctua-

ions in neuronal activity. Consistent relationships have been found be-

ween local fluctuations in at-rest BOLD and spikes ( Magri et al., 2012 ;

hmuel and Leopold, 2008 ), band-limited LFP power ( Magri et al., 2012 ;

an et al., 2011 ; Shmuel and Leopold, 2008 ; Thompson et al., 2013 ) and

nfraslow LFP (0.01 - 0.1 Hz) ( Pan et al., 2013 ). Nir et al. (2008) demon-

trate long-range correlations in neuronal spiking that occur at roughly

he same time scale as resting-state BOLD correlations ( Nir et al., 2008 ).
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esting-state correlations also exist in band-limited LFP power and in

nfraslow LFP ( He et al., 2008 ; Li et al., 2014 ). The spatial structures

f these electrophysiological correlations match those of BOLD correla-

ions. The spatial match to BOLD correlations is particularly good for

nfraslow LFP ( He et al., 2008 ), suggesting that the processes underly-

ng infraslow LFP may be closely related to those underlying correlated

OLD signals ( Khader et al., 2008 ). However there has been no direct

emonstration in a primate model showing a consistent relationship be-

ween, on the one hand, correlations in BOLD recorded at two locations,

nd on the other hand, correlations in any electrophysiological signals

ecorded at those same two locations. This gap is an important one to

ll, since infraslow LFP and LFP power could be driven, in whole or in

art, by non-neural elements such as glia or by hemodynamic processes

for review see Khader et al., 2008 ) and BOLD signals are also affected

y non-neuronal sources ( Birn, 2012 ; Schulz et al., 2012 ; Tong et al.,

015 ; Wang et al., 2018 ). Thus, it is possible that long-range correla-

ions in the different signal types could be driven by different sources. 

To definitively establish the temporal relationship between corre-

ated oxygen and correlated electrical activity, the two signals must be

ecorded simultaneously. To our knowledge, this has only been done

n mice ( He et al., 2018 ; Kozberg and Hillman, 2016 ; Murphy et al.,

018 ; Vazquez et al., 2014 ). Using a system to simultaneously record
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Fig 1. Lagged linear correlation between oxygen and electrophysiological signals recorded from the same site. A) Lagged correlation between oxygen and the raw 

LFP signal recorded in IPS (For V3 and PCC, see Fig. S6). Both the raw LFP signal and the oxygen signal were split into many frequency bands, and then correlations 

were calculated band by band. The X-axis denotes lag, the Y-axis denotes the frequency band and the color scale denotes correlation strength. Positive lags mean 

that electrophysiological signals were shifted forwards in time before computing the correlation. Correlations were most prominent at infraslow frequencies (0.01 to 

0.1 Hz) with little or no lag. B) Lagged correlation between oxygen and LFP power. Format is the same as A, except that once LFP power was computed, both the LFP 

power signal and the oxygen signal were filtered at 0.01 to 0.1 Hz, prior to computing the correlation. Correlations were most prominent for gamma band power, 

with a lag of ∼6 s. C) Lagged correlation between infraslow oxygen and infraslow LFP voltage (see panel A), infraslow band-limited LFP power within standard 

EEG bands (see panel B), and infraslow MUA. Infraslow LFP, gamma power and MUA have the strongest correlations with oxygen, significantly stronger than the 

next-highest correlated signal (Infraslow LFP vs. beta LFP: p < 0.05, t(58) = 2.414; gamma LFP vs. beta LFP: p < 0.05, t (58) = 3.378), but not significantly different 

from one another ( p = 0.8, t(58) = 0.2121). Peak correlation for infraslow LFP is at 0.5 s, which is much shorter than that for gamma power (5.8 s). 
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xygen levels and electrophysiology in non-human primates that cap-

ures slow, long-range oxygen correlations similar to those seen with

OLD fMRI ( Li et al., 2015 ), we demonstrate that similar correlations

xist in the firing rate of extracellular action potentials (spiking activ-

ty), that spikes in one hemisphere are correlated with oxygen levels

n homotopic cortex in the other hemisphere, and that infraslow LFP is

he strongest electrophysiological predictor of cross-hemisphere oxygen

orrelations. 

. Results 

.1. Lagged correlation and single spike responses of oxygen and infraslow 

FP 

We simultaneously recorded from four sites in two different func-

ional networks in awake monkeys resting quietly in a dark room and

xamined correlations between signals ( Supplemental Fig. S15 ). Two

f the recording sites were in left and right posterior cingulate cor-

ex (PCC), which is part of the task-negative default mode network in

acaques. ( Vincent et al., 2007 ). The other sites were either in left and

ight V3 (visual network; monkeys P and L) or left and right intraparietal

ulcus (IPS) (attention network; monkey E). In macaques, these areas

articipate in task-positive networks functionally involved in visual pro-

essing, oculomotor control, and attention ( Babapoor-Farrokhran et al.,

013 ; Felleman et al., 1997 ; Hutchison et al., 2012 ; Mars et al., 2011 ;

incent et al., 2007 ). Single-unit spiking activity, multi-unit activity

MUA), LFP, and oxygen signals were recorded simultaneously from

ach site. We first examined the local relationships between infraslow

xygen and an array of electrophysiological signals. From LFP, we ex-

racted both the band-limited power of LFP signals and the infraslow

0.01–0.1 Hz) fluctuations of raw LFP voltage. 
2 
To examine the temporal relationships between signals, we identi-

ed the direction and amount each electrophysiological signal had to be

hifted (in time) to maximize the absolute value of its cross-correlation

ith oxygen. Results for most signals were similar across regions, but

re shown separately in Fig. 1 (IPS) and Fig. S6 (V3 and PCC). Every

ested electrophysiological signal leads oxygen ( Fig. 1 ). Fig. 1 A shows

he lagged correlation between infraslow (0.01–0.1 Hz) oxygen and raw

FP signals at different frequencies. The correlation is prominent in low

requencies (below 0.3 Hz; see also Supplemental Fig. S4), peaking at

.05 Hz with LFP leading (preceding) oxygen by 0.5 s. Fig. 1 B shows the

agged correlation between infraslow fluctuations of band-limited LFP

ower and infraslow oxygen signals. This analysis reveals strong lagged

orrelations above 30 Hz, peaking at 76 Hz with LFP power leading oxy-

en by 6 s. Fig. 1 C shows cross-correlations between infraslow oxygen

nd conventional LFP power bands, infraslow LFP and MUA. Of these,

xygen most strongly correlates with infraslow LFP, gamma power and

UA across all recorded regions (Fig. S6). Infraslow LFP and gamma

ower have slightly higher correlation coefficients than MUA. Gamma

ower and MUA lead (precede) oxygen by 6 s. Beta, alpha and theta

ower show lower peak correlations at longer leads (8–20 s) and with

onsiderable interregional differences (Fig. S6). Previous studies have

lso reported that electrophysiological signals lead oxygen, although the

ead varies across studies (3–8 s) as does the particular frequency band

ith the strongest correlation, likely due to differences in species or be-

avioral state ( Magri et al., 2012 ; Murayama et al., 2010 ; Pan et al.,

011 ; Schölvinck et al., 2010 ; Shmuel and Leopold, 2008 ). Infraslow

FP leads oxygen by only 0.5 s, much less than any other electrophys-

ological signal. (This is also much shorter than the LFP lead found by

an et al. (2011) [2.5 s under DMED, and 4 s under ISO], perhaps re-

ecting a difference between awake monkeys and anesthetized rats.)

o summarize these results, we see that there is coupling between a
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Fig. 2. Spike-triggered average of oxygen, LFP voltage and 

gamma-band LFP. Spikes are aligned at time zero. The 

top left shows a 60 s (60,000 ms) window around the 

spike, with expanded views in the insets. Raw LFP (blue) 

and oxygen (red) show a slow drop starting ∼8 s before 

the spike. LFP has a strong negative transient around the 

time of the spike that lasts for ∼2 s. Riding on top of 

this is a small ( ∼1 uV), brief ( < 20 ms) negativity almost 

exactly coincident with the spike (insets on right). This 

brief negativity likely represents contamination of the 

high frequency spike onto the LFP signal, while the bulk 

of the negativity has a duration that is too long (more 

than 1000 times the duration of a spike) to be explained 

in this way. After the spike, oxygen and raw LFP each 

show a delayed increase that peaks around 6 s, slowly 

falls back toward the baseline, and then overshoots and 

becomes slightly negative for ∼10 s. The late slow re- 

sponses in oxygen and raw LFP closely match each other, 

with raw LFP leading by about 0.5 s. Gamma LFP power 

(green) rises slowly prior to the spike, peaks abruptly at 

the time zero, then shows a symmetric decrease (inset on 

bottom left). Power is elevated from ± 8 s around time 

zero, though the strongest response occurs within ± 1 s 
of the spike (For interpretation of the references to color 

in this figure legend, the reader is referred to the web 

version of this article.). 
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ange of electrophysiology signals and oxygen. After low-pass filtering

ost of these signals, including in particular unit activity and gamma

ower, they still lead oxygen by at least 6 s. In contrast, applying the

xact same low-pass filter to the LFP voltage signal yields a signal which

eads oxygen by only ∼0.5 s. Thus, the temporal coupling between elec-

rophysiological signals and oxygen is tightest for infraslow LFP. 

To further explore the temporal relationships between spikes, LFP

nd oxygen, we computed the spike-triggered average of oxygen, as well

s gamma and infraslow LFP ( Fig. 2 ). Results were similar across regions

Fig. S7) and therefore combined. On average, oxygen increases rapidly

ne second after a spike, peaking after 6.1 s, falling back to baseline after

0 s and then undershooting baseline slightly for ∼10 s. This bears some

esemblance to the transfer functions that relate task-evoked gamma to

xygen concentration ( Bentley et al., 2016 ) and to the BOLD signal itself

 Logothetis et al., 2001 ). It also resembles the cross-correlation functions

etween (1) spontaneous BOLD and gamma BLP and (2) spontaneous

OLD and MUA reported by Shmuel and Leopold (2008) , although there

s controversy over whether their recordings captured spontaneous or

voked activity ( Logothetis et al., 2009 ; Shmuel and Leopold, 2008 ). In

ontrast to oxygen, the spike-triggered average of gamma power shows

 symmetric elevation that is greatest at the time of the spike ( ± 1 s) and

eturns to baseline within 8 s. Surprisingly, the spike-triggered average

f raw LFP has a slow response that is almost identical to the oxygen re-

ponse, though it leads (precedes) oxygen by 0.5 s. Similar results were

btained using either a 0.01 or 0.07 Hz high-pass cut-off for the LFP

ecording (Supplemental Fig. S5). The fact that oxygen slightly lags but

therwise tracks the infraslow changes in LFP, without the need for an

ntervening transfer function, is consistent with (but does not prove) a

ommon cause or direct causal relationship between processes underly-

ng the two signals. An alternative explanation for the similar response

hapes, that low-frequency changes in field potential somehow affect
 o  

3 
ur oxygen measurement, can be ruled out by the fact that contamina-

ion would affect the oxygen and LFP measures nearly simultaneously

ather than with the observed 0.5 s offset between the two. 

The data are consistent with three scenarios: gamma LFP may medi-

te the spike-oxygen relationship, spikes may mediate the relationship

etween gamma LFP and oxygen (though considerable evidence argues

gainst this possibility; see Logothetis, 2008 for discussion), or spikes

nd gamma LFP may each be independently related to oxygen through

imilar (and perhaps overlapping) mechanisms. 

On a separate note, starting 8 s prior to the spike, both raw LFP

nd oxygen drop below their baseline levels ( Fig. 2 , inset). This could

ndicate that the processes underlying one (or both) of these signals in-

uences spike probability, however the pre-spike drop in oxygen is not

onsistent across regions (Fig. S7). Raw LFP shows an abrupt depolar-

zation that begins one second before the spike and lasts for about two

econds. The duration of this depolarization is far too long to reflect

he electrical activity of the spike itself ( Fig. 2 , insets to right). It may

nstead reflect the tendency of spikes to occur in so-called “up-states ”,

hat is, periods in which the intracellular potential is elevated close to

hreshold and the extracellular potential is depressed ( Wilson, 2008 ). 

Immediately after the spike there is a small sudden drop in oxygen

lower left inset) that is superimposed on the slower drop. This could

eflect a local and transient drop in oxygen similar to that reported by

hompson et al. ( Thompson et al., 2003 ). 

.2. Spikes predict infraslow LFP, which in turn predicts oxygen 

Lagged correlations ( Fig. 1 C) and spike-triggered averages ( Fig. 2 )

uggest the relationship between infraslow LFP and oxygen is lower la-

ency and less complex than that between spikes or gamma LFP and

xygen. This observation is consistent with several causal explanations,
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Fig. 3. Multivariate Granger causality analysis be- 

tween oxygen and electrophysiological signals. Each 

cell shows whether forecasts of its predicted sig- 

nal (column) improve when its predictor signal 

(row) is included in the model alongside the rest 

of the signals (see Methods). ( A) Top, oxygen does 

not improve forecasts of any electrophysiological 

signal (first row), only infraslow LFP (LFP INF ) im- 

proves oxygen forecasts (first column), infraslow 

LFP forecasts are most improved by MUA (fourth 

column), and MUA improves forecasts of every 

other signal except oxygen (second row). Bottom, 

a graph of the Granger causality result. Arrow 

widths correspond to the magnitude forecast im- 

provement, which is quantized into five categories 

( > 0.1, 0.1–0.05, 0.05–0.04, 0.04–0.03, 0.03–0.02; 

for Granger causality > = 0.02, p < 0.01). Weak 

improvements ( < 0.02) are not shown. ( B) When 

infraslow LFP is excluded from the analysis, MUA 

and gamma both improve oxygen forecasts (first 

column). Data are from V3 and PCC; see Supple- 

mental Fig. 8 for region-specific responses. 
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one of which can be definitively ruled out without (future) interven-

ional experiments. To better understand which explanations are more

ikely based only on the current data, we examined the unique predictive

tility of each signal with respect to all of the other signals using multi-

ariate Granger causality analysis ( Fig. 3 , see Methods). MUA improves

orecasts of LFP and gamma power. Oxygen forecasts are most improved

y infraslow LFP ( p < 0.001, with correction for multiple comparisons),

hile infraslow LFP forecasts are most improved by spikes ( p < 0.001,

orrected for multiple comparisons). It is of note that a connection be-

ween gamma power and oxygen appears only when infraslow LFP is

xcluded from the analysis ( Fig. 3 B). Multivariate Granger discounts

redictability that is not unique to a particular signal. Thus if both in-

raslow LFP and gamma power predict future oxygen, then to the extent

hat some of that predictive power is common to the two signals, the

redictive power will not be reported (see Methods). Finally, infraslow

FP has a small feedback effect on spikes and gamma LFP, which could

orrespond to the infraslow LFP change that precedes the spike in the

pike-triggered average. The key findings were similar across regions

nd robust to 10-fold changes in the temporal window of the analysis

Supp. Fig. 8). 

.3. Oxygen correlation tracks correlation in the spiking activity of neurons

Next we asked whether electrophysiological signals, especially sin-

le units and MUA, show long-range, network-aligned correlations sim-

lar to those found previously in BOLD and in polarographic oxygen

within-modality correlations). We distinguish two types of long-range

orrelations. Within-network correlations are measured within a single

etwork, e.g., between left and right PCC, or between left and right V3.

cross-network correlations are measured between two different net-

orks, e.g. between left PCC and right V3. We found, in agreement

ith a previous report ( Li et al., 2015 ), that within-network correla-

ions are mostly similar to each other (oxygen correlation[ left PCC-

ight PCC] = 0.51 ± 0.08 [Pearson’s r], oxygen correlation[ left V3- right

3] = 0.41 ± 0.07; oxygen correlation[ left IPS- right IPS] = 0.29 ± 0.08; p

PCC vs. V3) = 0.2, p (IPS vs. V3) = 0.1), and that the two across-network

orrelations, within and across hemispheres, are also similar to each

ther (oxygen correlation[V3-PCC, within hemisphere ] = 0.24 ± 0.04, oxy-

en correlation[V3-PCC, across hemisphere ] = 0.21 ± 0.04; p = 0.2). We

herefore group our results into “within-network ” and “across-network ”

results by region are shown in Supplemental Fig. S9). We considered
4 
 range of electrophysiological signals, including raw LFP, band-limited

FP power, multiple unit and single unit activity. We do not apply global

ignal regression (see Methods), which is commonly used in rsfMRI anal-

sis to reduce widely shared variance arising from a mixture of neuronal,

on-neuronal and artifactual effects ( Murphy et al., 2009 ; Murphy and

ox, 2017 ; Power et al., 2014 , 2018 ; Schölvinck et al., 2010 ). It remains

nclear how the relationship between fMRI data and neural activity is

ffected by global signal regression. 

Fig. 4 A shows that raw LFP shows significant correlation across re-

ions, and that within-network correlation (red) is significantly stronger

han across-network correlation (blue). Correlations are present and sig-

ificantly greater than zero from 0.006 to 200 Hz. Correlation peaks at

.05 Hz and rolls off gradually at higher frequencies. Correlation drops

teeply for frequencies below 0.01 Hz, which may be due in part to high-

ass filtering with a − 3 dB point at 0.07 or 0.01 Hz (see Materials and

ethods, Recording). Within-network correlation is substantially and

ignificantly greater than across-network correlation from 0.03 to 8 Hz,

ith small but significant differences persisting up to 30 Hz. One can

lso consider correlations in LFP power. In computing LFP power, there

re two different frequencies that need to be taken into account. First,

here is the underlying frequency at which we measure power. A pure

0 Hz sine wave, for example, has power at 60 Hz but not at any other

requency. Second, we can consider changes in power at a particular

emporal scale. The temporal scale we are most interested in is that of

ong-range oxygen correlations (MRI-based resting-state functional con-

ectivity), that is, the infraslow range from 0.01 to 0.1 Hz. We therefore

onsider band-limited power, computed over a small range of frequen-

ies, and then filtered to consider only changes in the power envelope

hat occur in the infraslow range. Fig. 4 B shows that band-limited LFP

ower, like oxygen and like raw LFP, shows significant long-range cor-

elation, and that this correlation is larger within-network (red) than

cross-network (blue). The correlation difference is substantial and sta-

istically significant for frequencies from 0.04 to 200 Hz. (The maxi-

um frequency was limited by the LFP sampling rate.) The correla-

ion increases with frequency up to around 55 Hz (within the gamma

and) and falls off for still higher frequencies. To summarize, correla-

ion in the raw LFP is strongest at low frequencies, centered around

.05 Hz, while correlation in band-limited LFP power is strongest at

igh frequencies, centered around 55 Hz. Such correlations within raw

FP and band-limited LFP are robust across our recording configura-

ions (Supplemental Fig. S3). Several studies have looked at non-linear
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Fig. 4. Within-mode electrophysiological and oxygen correlations . (A). Long-range correlation in raw LFP signal by frequency, within-network (red) versus across- 

network (blue). Correlation is present in a wide range of frequencies (0.006–200 Hz). Peak correlation is around 0.05 Hz (within-network: 0.055 Hz, across-network: 

0.049 Hz). (B). Long-range correlation in LFP power. LFP power was computed at half octave bands and the power at each band was then filtered to 0.01–0.1 Hz and 

used to compute long-range correlations. The strongest correlation was in the gamma band (55 Hz). Within-network correlations were greater than across-network 

correlations at all frequencies. (C). Like LFP, single and multi-unit activities show significant long-range, infraslow network-dependent correlations (top center and 

right) similar to those in oxygen (top left) and LFP (lower two rows). Correlations are significantly higher for within-network than across-network correlations in every 

case (oxygen: t(151) = 4.2365; single-unit: t (78) = 1.997; multi-unit: t (151) = 7.1176; infraslow LFP: t (151) = 3.2154; delta: t (151) = 2.2663; theta: t(151) = 3.6047; 

alpha: t (151) = 5.5918; beta: t (151) = 8.2037; gamma: t (151) = 9.2618; for single-units n = 20 within-network and n = 60 across-network; for all other signals 

n = 34 within-network and n = 119 across-network) and are significantly lower for single units than for multi-units (note different scales). For all 9 signals shown in 

C, correlations are computed within the frequency range of 0.01–0.1 Hz. ∗ ∗ ∗ = p < 0.001; ∗ ∗ = p < 0.005; ∗ = p < 0.05. Data are combined across regions (see Fig. 

S9) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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elationships between LFP bands, as well as cross-frequency coupling,

he relationship between the low frequency raw LFP signal and the high

requency LFP band-limited power ( He et al., 2010 ; Ko et al., 2011 ).

hough interesting, these topics are beyond the scope of the current

tudy. 

Unit correlations were computed using firing rates filtered to 0.01–

.1 Hz. Fig. 4 C shows that long-range infraslow correlations are present

n both MUA and single units, and that the unit correlations show

 spatial pattern similar to long-range low-frequency correlations in

xygen polarography (top row), as well as raw LFP and band-limited

FP power (middle and lower rows). In particular, like oxygen correla-

ions, both within- and across- network unit correlations were positive

p within < 0.001 and p across < 0.001) and consistently higher within-

etwork than across-network (oxygen, p < 0.001; single units, p < 0.05;
5 
UA, p < 0.001) ( Li et al., 2015 ; Murphy et al., 2009 ). The reduced

orrelation of single units compared to multiple units ( r = 0.16 ver-

us 0.55 for within-network) is to be expected, since the MUA signal is

ooled over many individual single units. The mean single unit corre-

ation would be comparable to the multiunit correlation only if every

eighboring single unit carried identical or nearly identical signals; this

s clearly not the case. 

Next we asked whether correlations in unit activity occur within

he same frequency range as correlations in oxygen. Fig. 5 A shows

hat, like long-range oxygen correlations, both single-unit and multi-

nit correlations are band-limited. This is consistent with our previous

esults, though the literature is mixed on this point (see Discussion in

i et al. 2015 ). The peak correlations are similar, though slightly lower

n frequency for units (0.03 Hz for MUA, 0.04 Hz for single units) com-



J.M. Li, B.T. Acland, A.S. Brenner et al. NeuroImage 247 (2022) 118728 

Fig. 5. Frequency distribution of correlation and 

power in units and oxygen. (A). Oxygen and unit co- 

herence as a function of frequency. Coherence pro- 

vides a measure of the frequency distribution of 

the correlation. Both within- and across-network 

coherences are band-limited. This is true for oxy- 

gen, single unit, and multi-unit coherences. (Un- 

like LFP there was no high-pass filtering of spikes 

nor oxygen signals that might explain the fall- 

off below 0.01 Hz.) The band-limited coherences 

suggest that a rhythmic or near-rhythmic mecha- 

nism drives long-range, network-aligned correla- 

tion. Unlike either unit coherence or gamma BLP 

(Supplemental Fig. 11), whose long-range coher- 

ences are significant up to 2 Hz, oxygen coherence 

does not extend above 0.3 Hz. This difference is 

consistent with the idea that there is a low-pass 

stage in between neuronal activity (spikes) and the 

hemodynamic response. Interestingly, merely low- 

passing the neuronal signals, including in partic- 

ular single unit activity and gamma power, still 

leaves us with a ∼6 s lag ( Fig. 1 C). In contrast, 

using the exact same low-pass filter on the raw 

LFP signal leads to a single with ∼0 s lag.. (B). 

Power spectra of oxygen, multi-unit activity, and 

single unit activity. In all three cases, the power 

increases as frequency drops. The relationship be- 

tween power and frequency is well fit by a linear 

relationship between the log of each signal [log 

(power) = - 𝛽log(frequency) + k ] . This is typically 

referred to a 1/f power spectrum. There are devia- 

tions from 1/f, most pronounced at around 0.01 to 

0.1 Hz, which could reflect the process(es) driving 

the band-limited correlation. Above 10 Hz there 

is a plateau in spike power, which may reflect a 

lower limit on spike power for our recording con- 

ditions. Power above 10 Hz is excluded from the 

estimation of the 1/f relationship. 

p  

r  

a  

f  

b  

i  

2  

t  

q  

e  

d  

s  

w  

0

 

g  

w  

F  

q  

t  

t  

t  

c  

t  
ared to oxygen (0.06 Hz). Unit correlations extend farther in both di-

ections compared to oxygen, for a full-width at half-max bandwidth of

bout 1.5 decades for oxygen, 2 decades for single spikes and 3 decades

or MUA. The attenuation of oxygen correlation at the high end of this

and, relative to spike correlation, is consistent with the high-cut filter-

ng characteristics of the hemodynamic transfer function ( Bentley et al.,

016 ; Logothetis et al., 2001 ). The attenuation of oxygen correlation at

he low end of this band, and the shift to a higher peak correlation fre-

uency compared to unit activity, are consistent with a low-cut filtering

ffect, perhaps related to the post stimulus undershoot in the hemo-

ynamic response function. However, apart from this, the patterns of

ingle-unit, multi-unit and oxygen correlations are all roughly similar,
6 
ith the highest correlations occurring in the range from about 0.01 to

.1 Hz. 

The similarity between the frequency distributions of spike and oxy-

en correlations might easily be explained if spike and oxygen signals

ere themselves similarly band-limited. This is not the case, however.

or spikes as well as oxygen, the local power drops with increasing fre-

uency over a very wide range ( Fig. 5 B). Therefore the similarities be-

ween long-distance spike correlation and long-distance oxygen correla-

ion are not inherited from the local power spectra. Furthermore, note

hat the peak in long-distance correlation in all three signals roughly

orresponds to a point of maximum positive deviation from a 1/f 𝛽 fit

o the local power. This is consistent with a model in which there are
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Fig. 6. Lagged correlation between oxygen and multi-unit activity within a site (lo- 

cal) and across sites separated by at least 1 cm (distal) . Black: the mean lagged 

correlation between oxygen and multi-unit activity recorded from the same (lo- 

cal) site; red: the correlation between oxygen and multi-unit activity recorded 

from distal sites, both in the same network; blue: the correlation between oxygen 

and multi-unit activity recorded from distal sites, each from different networks. 

Data are combined across regions; for individual regions see Fig. S12 (For inter- 

pretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.). 
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(  
wo separate and at least partially independent sources of variance: one

ource or set of sources with only local influence and 1/f characteristics,

nd a second source or set of sources that influences signals at distal lo-

ations and has band-limited characteristics ( Li et al., 2015 ). 

Returning to the issue of whether oxygen correlations reflect cor-

elations in neuronal activity, we directly compared oxygen and unit

ctivity. To account for any hemodynamic delay, we computed lagged

orrelations. Local oxygen and local multi-unit activity are correlated

ith each other ( Figs. 1 and 6 , black), reaching a peak correlation at

 lag of 6 s (spikes leading, oxygen following). Importantly, we also

ound that oxygen at one site is significantly correlated with multi-unit

ctivity at distal sites with a similar delay ( Fig. 6 ). The fact that spike-

ssociated oxygen fluctuations occur simultaneously across sites support

he view that correlated oxygen fluctuations arise in part due to corre-

ated spiking activity. These cross-modal long-distance correlations are

resent both within and across networks. Local correlations are signif-

cantly stronger than distal correlation, and within-network distal cor-

elations are stronger than across-network distal correlations (local vs.

ithin network: p < 0.05, t(232) = 2.6248; within network vs. across

etwork: p < 0.05, t (302) = 7.7811; statistics computed at a lag of 6 s).

ogether, these results strongly support the idea that oxygen correlation

eflects correlated neural activity. 

.4. Infraslow LFP accounts for long-range oxygen correlation 

We next asked which electrophysiological signal – spikes, infraslow

FP, or band-limited LFP power – best explains long-range oxygen cor-

elations. Fig. 5 suggests that only a small, band-limited portion of the

otal local variance in oxygen (right column) is shared across distal sites

left column). The electrophysiological signals that best explain this re-

tricted fraction of oxygen variance may differ from those that best ex-

lain the much larger local variations. 

To address this possibility we developed a regression-based correla-

ion dependence analysis. This analysis determines whether the shared

ariance between oxygen signals is the same as the shared variance be-
7 
ween oxygen and electrophysiological signals by calculating how much

xygen correlations decrease after regressing out electrophysiological

ignals simultaneously recorded from the same locations (see Fig. 7 and

ethods). This analysis indicates that the component of local oxygen

ariance underlying long-distance oxygen correlations is best explained

y local infraslow LFP, which accounts for 72% of within-network oxy-

en covariance and 57% of across-network covariance ( Fig. 7 ). Gamma

ower is the next closest contender, but explains significantly less oxy-

en covariance than does infraslow LFP ( P < 0.05, paired t -test, with

orrection for multiple comparisons). (Note that error bars in the plot

apture pooled variance, while statistics are computed pairwise and

herefore are more powerful.) Multi-unit activity has the third strongest

elationship to long-distance oxygen correlations. 

. Discussion 

We measured correlates of infraslow cortical tissue oxygenation in

n awake monkeys at rest. Infraslow LFP stands apart from all other

lectrophysiological signals as a correlate of oxygen, both at the local

evel (within an MRI voxel) and when comparing activity simultane-

usly recorded from distal sites within and across resting-state networks.

The local relationship between infraslow LFP and oxygen is unique in

everal respects. Infraslow LFP leads oxygen by ∼500 ms, whereas spikes

nd LFP power (delta through gamma bands) lead oxygen by more than

ix seconds ( Fig. 1 ). The short lead time of infraslow LFP does not re-

ect cross-talk between our recording systems, which would be instan-

aneous. After accounting for time delays, infraslow LFP is significantly

ore correlated with oxygen than any electrophysiological signal save

amma LFP power, which shows comparable correlation after a consid-

rably longer delay ( Fig. 1 ). Finally, the spike-triggered average (STA)

f raw LFP features an infraslow post-spike response that is nearly iden-

ical to the STA of oxygen, but again leads oxygen by ∼500 ms ( Fig. 2 ).

ecause these data were collected in the resting state rather than during

 task, it is unclear to what extent the spikes that we record are clus-

ered in time and space (regardless, we of course do not mean to imply

hat a single action potential determines the functional connectivity of

he entire brain). Together, these findings strongly suggest a unique re-

ationship between the processes and mechanisms underlying infraslow

xygen and infraslow LFP, as compared to other electrophysiological

easures. Further, the lag between infraslow LFP and oxygen is the

ame whether we consider spike-associated activity or full time-courses,

onsistent with overlap between the mechanisms relating infraslow LFP

nd oxygen to each other and to spikes. 

While we use an STA to reveal the post-spike responses, we do not

ean to imply that single action potentials determine the functional

onnectivity of the entire brain. While these data were collected in the

esting state rather than during a task, the single unit panel of Fig. 4 C

emonstrates that there is clustering of spikes in time and space. The

elationship between infraslow LFP correlations and long-range oxy-

en correlations also stands out. Infraslow LFP accounts for most of

he correlation in oxygen, significantly more than any other signal con-

idered in this study. While we observed network-aligned long-range

orrelations in all electrophysiological signals, correlation is highest

t infraslow LFP frequencies and in infraslow fluctuations of higher-

requency LFP power. Long-range spike correlations are also highest at

nfraslow frequencies. Intriguingly, Granger causality analysis suggests

hat infraslow fluctuations in multi-unit spiking activity drive colocal-

zed infraslow fluctuations in LFP, which in turn drive infraslow fluctua-

ions in oxygen. Together, these findings suggest that the neural activity

nd neurovascular coupling mechanisms relating oxygen and infraslow

FP to each other and to spikes at the local level may underlie the bulk

f long-range oxygen correlations. 

Our findings stand in contrast to (but do not contradict) previ-

us reports that identify gamma LFP ( Goense and Logothetis, 2008 ;

ogothetis et al., 2001 ; Shmuel and Leopold, 2008 ) and MUA

 Shmuel and Leopold, 2008 ) as the best electrophysiological corre-
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Fig. 7. Regression-based dependence analysis on oxygen correlation. Left : dependence analysis determines whether the shared variance between oxygen signals is the 

same as the shared variance between oxygen and MUA activity (or any other electrophysiological signal). Middle : oxygen correlation before (red asterisk) and 

after (colored circles) regressing out linearly transformed electrophysiological signals (see Methods). Regressing out infraslow LFP (LFP INF ) had the greatest effect 

on oxygen correlation, substantially reducing both within- and across-network correlation (within-network: n = 27; across-network: n = 84). Right : Infraslow LFP 

accounts for 72% of the covariance underlying within-network oxygen correlation, and 57% of the covariance underlying across-network correlation. Gamma power 

accounts for 46% of within-network oxygen covariance and 37% of across-network covariance. MUA accounts for 43% of within-network oxygen covariance and 31% 

of across-network covariance. Other electrophysiological signals account for only 10–42% of oxygen covariance. Data are combined across regions, for individual 

regions see Fig. S14. 
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L  
ates of the BOLD signal. Gamma LFP power exhibits higher long-range

ithin-mode correlation than infraslow LFP ( Fig. 4 c), and infraslow LFP

nd gamma LFP power are equally well correlated with local oxygen

ariance ( Fig. 1 c;), yet infraslow LFP best accounts for the relatively

mall fraction of local oxygen variance that underlies long-distance

xygen correlations ( Fig. 7 ). This apparent dissociation between long-

ange oxygen and electrophysiological correlations could be explained

y a neuronal process that drives long-range correlation of band-limited

amma power in the 0.01 to 0.1 Hz range, but has a less effect on oxy-

en levels than the processes underlying infraslow LFP. This is in turn

onsistent with the idea that different frequency components of electri-

al signals may reflect the activity of different neural processing path-

ays ( Buice and Chow, 2013 ; Magri et al., 2012 ; Tong et al., 2015 ).

nother relevant point is that gamma band power and infraslow LFP

mplitude may be differentially contaminated by non-neural processes

r by noise, which may then differentially affect both long-range cor-

elations and correlations with local oxygen. In summary, although in-

raslow LFP does not exhibit the strongest within-mode long-range cor-

elation among the electrophysiological signals, this does not preclude

t from being the best predictor of long-range oxygen correlations. 

There are many potential sources of infraslow LFP fluctuations, and it

s likely that, at any given location, multiple such processes unfold more

r less independently of one another. Here, we focus only on those that

ffer a clear potential explanation of the main observations described

n this report. The infraslow LFP could reflect an elevation in astro-

yte calcium waves, which have been proposed to help control blood

ow ( Hillman, 2014 ). This could explain the strong coupling and rel-

tively short delay between infraslow LFP and oxygen changes. This

xplanation requires that astrocytic processes be spatially aligned, else

he voltage gradients would cancel one another and not be detected by

ur electrodes. Alternatively, infraslow LFP could reflect prolonged de-

olarization of pyramidal apical dendrites, which are neatly aligned to

orm an open field arrangement capable of generating strong changes

n potential ( Mitzdorf, 1985 ). If true, this would imply that infraslow

FP signals reflect inputs that drive changes in excitability, which then

anifest as changes in spiking activity. However, in the resting state,

pike-triggered averaging and Granger causality analysis show that spik-

ng activity leads and may drive the infraslow LFP; the reverse (slow

FP influencing spike rate) may occur but is at best only a weak effect

 Schmidt et al., 2014 ). 

Our data are most consistent with infraslow LFP reflecting a process

hat occurs following spikes. For example, infraslow LFP could corre-

t  

8 
pond to a membrane hyperpolarization that arises from a slow recov-

ry of voltage-gated sodium channels from the inactivation state follow-

ng action potential generation ( Mickus et al., 1999 ; Ogata and Tate-

ayashi, 1992 ; Toib et al., 1998 ). However, this interpretation does not

ffer a clear explanation of the close correspondence between infraslow

FP and infraslow oxygen. Future studies combining intracellular and

xtracellular recordings with pharmacological approaches to manipu-

ate channels may elucidate the physiological processes underlying both

ignals, as well as their relationship to brain function. 

Our principle findings have clear antecedents in the literature. We

ere able to show that spikes, like oxygen, show long-range correlation

 Fig. 4 ) because we considered correlation on a time scale of seconds.

any previous studies focused instead on a scale of milliseconds, and as

 result are blind to slow correlations. However, long-range slow spike-

pike correlations have been previously reported in human bilateral au-

itory cortices ( Nir et al., 2008 ). Ma et al. (2016) described a close rela-

ionship between correlated bilateral fluctuations of excitatory neuron

alcium levels and optically recorded hemoglobin ( Ma et al., 2016 ). Sim-

larly, several studies have anticipated our finding that the infraslow LFP

ignal is well correlated with oxygen ( He et al., 2008 ; Li et al., 2014 ).

his relationship has eluded wider observation in part because of a long

radition of looking at EEG power rather than the raw (unfiltered) LFP

ignal, and in part because most off-the-shelf systems for recording LFP

ncorporate high-pass filters that eliminate infraslow LFP. Finally, we

ere able to more directly establish the relationship between infraslow

FP and correlated oxygen ( Fig. 7 ) because we focused our analyses on

he correlated oxygen signal. The correlated oxygen signal differs sub-

tantially from the local oxygen signal; the former has bandpass char-

cteristics while the latter is 1/f ( Fig. 5 , top row). While gamma power

an be linearly transformed (via a hemodynamic function) to resemble

he local oxygen signal, it has a significantly weaker relationship than

nfraslow LFP with long-range oxygen correlation. In contrast, infraslow

FP has a strong relationship with both local oxygen levels ( Figs. 1–3 )

nd long-range oxygen correlation ( Fig. 7 ). 

. Materials & methods 

.1. Animals and behavior 

Three macaques served as subjects in this study. Animals were cared

or and handled in accordance with the Guide for the Care and Use of

aboratory Animals, and all procedures were approved by the Washing-

on University Animal Studies Committee. During recording, macaques
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c  
ere fully hydrated and sat head-fixed in a dark room. Behavior was un-

onstrained, and the animals had no expectation of a task or reward. An-

mals naturally relaxed in the setup. Eyes were partially or fully closed

4.7 ± 6.4%, 28.4 ± 7.3% and 85.5 ± 2.1% of the time, respectively, for

onkeys P, E and L. 

.2. Recording 

A total of 65 sessions were recorded with an average duration

f 50 min. Intracranial oxygen and electrophysiological signals were

ecorded simultaneously from both hemispheres ( Supplemental Fig.

15 ). Some sessions (19 from monkey P, 16 from monkey L) recorded

ilateral PCC and bilateral V3 sites (4 sites total). The remaining 30 ses-

ions (from monkey E) recorded bilateral PCC and bilateral IPS sites (4

ites total). At each site, two electrodes (separated by 0.5 mm) recorded

oncurrent oxygen and electrophysiological signals separately. Results

ere generally similar for the three monkeys, and thus the data were

ombined. 

Electrodes were targeted to each area of interest using anatomical

RI images and physiology ( Bentley et al., 2016 ). Briefly, each animal’s

rain was accessed via bilateral 15 mm (internal diameter) chronic cus-

om recording chambers. T1 weighted MRI images (MPRAGE; 0.5 mm

sotropic voxels) were obtained using a custom phantom in the cham-

er that provides visualization of the chamber and allows for the virtual

rojection of a chamber-based coordinate system down into the brain. In

ne monkey, two small manganese injections were used to validate tar-

eting accuracy by comparing their expected locations to their actual

ocations in an MRI image acquired directly following the injections.

rior to data collection, boundaries for PCC, V3 and IPS recording re-

ions were defined on the MRI image. The positions of PCC, V3 and

PS were further validated based on their respective oxygen and elec-

rophysiological responses to visual stimulation, which were recorded

mmediately before the resting state data ( Bentley et al., 2016 ). 

The multi-channel voltage clamp system used to record oxy-

en signals is described and validated in Li et al. (2015) and

entley et al. (2016) , and a similar system is described in

hompson et al. (2003) and ( Khine et al., 2003 ). Oxygen signals (the

lamp’s current) were sampled without filtering and stored at 1 KHz,

hen mean-centered offline before analysis. Electrophysiological sig-

als were recorded using tungsten microelectrodes (Alpha Omega LTD).

i et al. (2015) includes example traces of both signals ( Li et al., 2015 ).

lectrical activity was filtered, amplified and sampled using the Plexon

AP system (Plexon, Inc.). For identifying action potentials, data were

ltered from 400 Hz (high pass, 2-pole analog filter) to 8000 Hz (low

ass, 6-pole filter) and stored at 40 KHz. For local field potentials (LFP),

he data presented in the main text and figures (54 recording sessions)

sed a 200 Hz 2-pole low-pass filter and 0.07 Hz 1-pole high-pass analog

lter, and were digitized at 1 KHz. A high-pass filter is necessary because

FP power is roughly inversely related to frequency, and so very low fre-

uencies will saturate the amplifiers. A 1-pole filter reduces the signal

mplitude by half when the frequency halves, and so prevents satura-

ion while still passing through a large amount of low frequency signal.

s a result, we can measure (attenuated) LFP amplitude down to at least

.001 Hz in this system. However, a low pass filter will impose a phase

hift, with larger impact for lower frequencies. This could affect the raw

FP analyses associated with Figs. 1 , 2 and 7 (LFP power, oxygen and

ingle unit activity are not affected by this cut-off). To minimize this

istortion, we replaced the 0.07 high pass filter Hz filter with a 0.01 Hz

-pole analog filter, collected 11 additional data sets from monkey L,

nd re-ran these analyses. These results were essentially identical to the

.07 Hz data, and are presented in Supplemental Results. A second rea-

on to use a high-pass filter is to prevent slow drift in signals. Despite our

nusually low high-pass cut-offs, we saw little evidence for slow drift,

nd no evidence of a significant drift in our recordings (Supplemental

ig. S1). 
9 
Oxygen and electrophysiological recording systems were electrically

solated from each other using a custom-built optical isolation system.

his system limits possible cross-talk mechanisms to capacitive coupling

o earth. Isolation was confirmed in vitro . 

.3. Analysis 

All analyses were performed with custom software written in Matlab

MathWorks). T-tests were all two-tailed. Oxygen polarographic signals,

ike BOLD signals, reflect relative rather than absolute oxygen levels.

herefore the polarographic signals, like BOLD data, were expressed as

ercentage deviation from the mean signal level. High-frequency elec-

rical activity was analyzed offline to extract identifiable action poten-

ials (single unit activity) or multi-unit activity (MUA), applying clus-

ering algorithms in a feature space based on principle component pro-

ections (Offline Sorter, Plexon Inc.). The low-frequency electrical ac-

ivity ( “raw LFP ”) was notch filtered at 60 Hz to remove power line

oise. The raw LFP signal was used for Figs 1 A, 2 and 4 A. The raw

FP signal was further processed to extract band-limited LFP power.

o extract band-limited power, the LFP was first digitally filtered into

ve bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–16 Hz), beta (16–

2 Hz), and gamma (32–128 Hz) (We use these bands because they are

stablished in the EEG literature, and not because we observed well-

eparated rhythms with distinct dynamics corresponding to these par-

icular bands.) A Hilbert transform was applied to compute the power.

inally, the Hilbert-derived power was digitally band-pass filtered to

.01 to 0.1 Hz. To extract infraslow LFP amplitude, the raw LFP signal

as digitally band-pass filtered to 0.01 ∼0.1 Hz. 

.4. Heart-rate removal 

Cardiac and respiratory activity both drive variance in polarographic

xygen signals. We estimated and regressed out this variance session-

y-session and site-by-site, following the same procedure described in

 Li et al., 2015 ). 

.5. Filtering 

Most studies report that MRI functional connectivity is most robust

t slow time scales from about 0.01 to 0.1 Hz ( Salvador et al., 2008 ;

asai et al., 2011 ). We previously showed, and replicate in this study,

hat the long-distance correlation in the polarographic oxygen signal

ies within this same frequency range ( Li et al., 2015 ). Thus many of

ur analyses compare electrophysiological signals to infraslow (0.01 to

.1 Hz) filtered oxygen signals. This raises a potential confound, ex-

lained below. 

A number of our analyses focus on the timing of the relationships

etween electrophysiological signals and oxygen, essentially asking: af-

er a change in signal A, how long is the delay before the corresponding

hange in oxygen? On the face of it, this is a straightforward question.

ut there is a hidden complication. In most of our analyses, signal A and

xygen have both been passed through at least one filter, and filtering a

ignal can shift it in time. If oxygen has been shifted forwards in time by

 low-pass filter but signal A has not, then the delay between changes in

ignal A and related changes in oxygen will increase. This would make

nalysis of the timing of the relationship between the two signals hard

o interpret (perhaps meaningless). The problem is actually worse, be-

ause we compare a number of filtered signals to oxygen with the goal

f asking how their temporal relationships to oxygen differ, and what

hose differences suggest about the causal relationships driving changes

n oxygen. But if the timing differences arise in large part due to the dif-

erent filters applied to each signal, interpreting such results becomes

uite difficult if not impossible. 

To avoid this confound, we digitally filtered the electrophysiologi-

al signals (including unit activity, raw LFP, and LFP power) between
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.01 to 0.1 Hz using the same type-II Chebyshev filter applied to oxy-

en data before all analyses that use infraslow oxygen, including those

llustrated by Figs 1 B,C, 3, 4A–C, 6, and 7. For single and multi-unit

ctivity, this filtering was applied to the time series representing firing

ate. This filtering also eliminates any confound that might otherwise

rise due to differences in the frequency content of the electrophysio-

ogical signals and infraslow oxygen. A similar matching of frequency

ontent can be achieved by averaging the signal within sequential time

ins ( Magri et al., 2012 ). However, filtering is a more robust procedure

n this regard than binning ( Oweiss, 2010 ). 

.6. Correlation and coherence 

Correlation was calculated as Pearson’s r. Lagged correlation be-

ween electrophysiological signals and oxygen was obtained by shifting

he electrophysiological signals forwards or backwards in time before

alculating their correlation with oxygen. The methods used to calcu-

ate coherence and the mean expected bias in coherence are described

n Li et al. (2015) . For the result reported in Fig. 5 , the mean expected

ias was subtracted out so that a value of zero corresponds to the con-

istency of phase differences that would be obtained by chance were the

ull hypothesis true (no coherence). 

.7. Regression-based dependence analysis 

In order to determine which signals drive long-range correlations,

ne might ask if the correlated portion of two putative driver signals

atches the correlated portion of two putative driven signals. For ex-

mple, given a gamma LFP signal and an oxygen signal from site A, and

 gamma LFP and oxygen signal from site B, one might ask if the corre-

ated portion of the two gamma LFP power signals predicts (matches) the

orrelated portion of the two oxygen signals. Unfortunately, although

ne can compute a correlation coefficient between two signals, one can-

ot accurately extract the correlated signal. The extraction of a corre-

ated component assumes that each of the two individual signals can be

eparated into a shared (correlated) component and an unshared (non-

orrelated) component. Thus the two original individual signals are to

e separated into three components – one correlated and two uncorre-

ated. Since there are more components than sources, there is no closed

orm solution to this problem. A similar argument can be made for three

ignals, four signals, etc. 

As the number of signals becomes very large, a component that

losely approximates the correlated component can be extracted using

ethods such as principle component analysis or independent compo-

ent analysis. The general idea behind these methods is to construct

 coefficient matrix and then use that matrix to determine a weighted

verage of the original signals, which constitutes a pseudo-correlated

omponent ( Li et al., 2009 ). Methods differ on the exact process used

o construct the coefficient matrix. Regardless of the method, the ex-

racted pseudo-correlated component is a weighted average of the orig-

nal signals, and so the extracted component is inevitably contaminated

o some degree by the uncorrelated components of the original signals.

he amount of contamination depends in part on the magnitude of the

orrelation (which reflects the ratio between the correlated and non-

orrelated components in the original signals), and on the number of

aw signals used to construct the correlated component. 

Supplemental Fig. S2 shows that the amount of contamination de-

reases as the number of raw signals increases. In the case of our data,

e have two sets of two within-network signals (each set corresponding

o one of two functional networks) and four sets of two across-network

ignals. The extracted pseudo-correlated component is heavily contami-

ated by local un-correlated signals (38.6% for the within-network com-

onent, and 63.4% for the across-network component). To reduce con-

amination below 10%, at least 12 within-network signals and at least 33

cross-network signals would be required ( Supplemental Fig. S2 ). (NB
10 
his means our data cannot provide an uncontaminated “global signal ”

or use in global signal regression). 

With the difficulty of extracting the correlated component in mind,

e developed a regression-based correlation dependence analysis to de-

ermine which electrophysiological signal best accounts for the corre-

ation we see in oxygen signals. Correlation dependence analysis asks

ow much the correlation between one pair of signals (a putative driven

ignal) may depend on the correlation between another pair of signals

a putative driver signal). As a simplified example, consider recording

xygen, gamma and beta signals from sites A and B. Suppose that all

hree signals show within-mode correlation, and that the correlated

omponent of each site’s oxygen signal is linearly predicted by their

espective gamma (but not beta) signals. In this case, regressing out

 gamma (gamma power recorded at site A) from A oxygen and regressing

ut B gamma from B oxygen will eliminate the correlation between A oxygen 

nd B oxygen . In contrast, regressing out A beta from A oxygen and B beta from

 oxygen (respectively) will have no effect on the correlation between

 oxygen and B oxygen . More generally, the extent to which interregional

xygen correlation diminishes after regressing out a particular electro-

hysiological signal reveals the extent to which the correlated compo-

ent of oxygen signals statistically depends on correlated activity re-

ected by that particular electrophysiological signal. 
To determine the electrophysiological dependencies of oxygen cor-

elation, we first compute the baseline covariance of oxygen correlation
0.01–0.1 Hz) using Pearson’s correlation (Covariance [B efore regression ] ).

e then ask how much of this baseline covariance can be accounted
or by electrophysiological signals. This is accomplished using linear
egression after applying transfer functions to the electrophysiological
ignals, as described in Logothetis et al. (2001) . A transfer function is
omputed separately for each electrophysiological signal (session-by-
ession and site-by-site) via the Welsh method ( Oweiss, 2010 ). Briefly,
he data are broken into 5-minute half-overlapping windows. Oxygen
nd an electrophysiological signal recorded from an adjacent electrode
re converted into complex exponential form using Fourier transforma-

ion ( A O (t,f)e 
i 𝜓O(t,f) and A E (t,f)e 

i 𝜓E(t,f) , respectively). A transfer function
epresenting the relationship between the electrophysiological signal
nd the oxygen level is computed as follows: 

 𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

= 
∑[

𝐴 𝑂 ( 𝑡, 𝑓 ) 𝑒 𝑖 𝜓 𝑂 ( 𝑡,𝑓 ) ∗ 𝐴 𝐸 ( 𝑡, 𝑓 ) 𝑒 𝑖 𝜓 𝐸 ( 𝑡,𝑓 ) 
]
− 
[∑

𝐴 𝑂 ( 𝑡, 𝑓 ) 𝑒 𝑖 𝜓 𝑂 ( 𝑡,𝑓 ) 
]
∗ 
[∑

𝐴 𝐸 ( 𝑡, 𝑓 ) 𝑒 𝑖 𝜓 𝐸 ( 𝑡,𝑓 ) 
]

∑ [
𝐴 𝐸 ( 𝑡, 𝑓 ) 𝑒 𝑖 𝜓 𝐸 ( 𝑡,𝑓 ) 

]2 − 
[∑

𝐴 𝐸 ( 𝑡, 𝑓 ) 𝑒 𝑖 𝜓 𝐸 ( 𝑡,𝑓 ) 
]2 

This transfer function is convolved with the electrophysiological sig-

al and the result regressed out of the oxygen signal, thereby remov-

ng from the oxygen signal all variance that can be predicted by the

lectrophysiological signal. Session-by-session and site-by-site compu-

ation allows for different transformations at different sites, accounting

or possible site-specific variability in neurohemodynamic relationships

 Bentley et al., 2016 ). 

The final step in correlation dependence analysis is to compute the

ovariance in oxygen that remains after the influence of one electro-

hysiological signal has been regressed out (Covariance [A fter regression ] ).

he percentage of the total covariance in the oxygen that is accounted

or by that electrophysiological signal is then simply: 

( 𝐶 𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐 𝑒 𝐵 𝑒𝑓𝑜𝑟𝑒𝑟𝑒𝑔 𝑟𝑒𝑠𝑠𝑖𝑜𝑛 − 𝐶 𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐 𝑒 𝐴𝑓𝑡𝑒𝑟𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ) 
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐 𝑒 𝐵 𝑒𝑓𝑜𝑟𝑒𝑟𝑒𝑔 𝑟𝑒𝑠𝑠𝑖𝑜𝑛 

× 100% . 

We performed correlation dependence analysis using oxygen and

lectrophysiological signals filtered at 0.01–0.1 Hz. 

.8. Granger causality 

Multivariate Granger causality was computed to gain further in-

ight into the temporal relationships between signals ( Barnett and

eth, 2014 ). Granger causality determines whether the history of sig-

al A and B together can improve the prediction of the future of signal

, compared to using the history of B alone. If it does, then A is Granger

ausal to B. Multivariate Granger causality is an extension of this logic,

here A is Granger causal to B, only when the history of signal A and
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ll other signals together improve the prediction of the future of B, com-

ared to using signals excluding signal A. It is important to recognize

hat although Granger causality can provide evidence consistent with

ausality, it does not provide proof of causality. 

Before computing Granger causality, we filtered both oxygen and

lectrophysiological signals between 0.01 and 0.1 Hz. We computed

ranger causality using a range of model lengths (up to 10 s) to account

or possible lags in the causal relationship between electrophysiolog-

cal and oxygen signals. The results were similar across model lengths

nd recording locations ( Supplemental Fig. S8 ), and we present the re-

ult for a model length of 1 s. Similar to transfer function computation,

ranger causality was also computed session-by-session and site-by-site.

ignificance was tested by permuting data across recording sessions in

rder to generate a null distribution, against which we compared the

ctual results. 
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