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Resting-state functional MRI (rsfMRI) provides a view of human brain organization based on correlation patterns
of blood oxygen level dependent (BOLD) signals recorded across the whole brain. The neural basis of resting-
state BOLD fluctuations and their correlation remains poorly understood. We simultaneously recorded oxygen
level, spikes, and local field potential (LFP) at multiple sites in awake, resting monkeys. Following a spike, the
average local oxygen and LFP voltage responses each resemble a task-driven BOLD response, with LFP preceding
oxygen by 0.5 s. Between sites, features of the long-range correlation patterns of oxygen, LFP, and spikes are
similar to features seen in rsfMRI. Most of the variance shared between sites lies in the infraslow frequency band
(0.01-0.1 Hz) and in the infraslow envelope of higher-frequency bands (e.g. gamma LFP). While gamma LFP and
infraslow LFP are both strong correlates of local oxygen, infraslow LFP explains significantly more of the variance
shared between correlated oxygen signals than any other electrophysiological signal. Together these findings are
consistent with a causal relationship between infraslow LFP and long-range oxygen correlations in the resting

state.

1. Introduction

BOLD signals from resting humans, non-human primates, and ro-
dents exhibit infraslow (0.01 - 0.1 Hz) fluctuations that are highly cor-
related among spatially distant regions. The pattern of these correla-
tions contains reproducible inter-regional groupings, or networks, that
tend to co-fluctuate during tasks (Fox et al., 2005; Gorges et al., 2017;
Ma et al., 2016; Raichle et al., 2001). Resting-state BOLD network struc-
ture shows subtle, apparently functionally significant, variation among
individuals and between control and patient populations (Peer et al.,
2017). However, resting-state BOLD networks do not strictly correspond
to any known pattern of anatomical connectivity between neurons, and
their neural bases and functional roles (if any) remain unclear.

Much evidence indicates that infraslow BOLD signal correlations
comprising resting-state networks reflect correlated infraslow fluctua-
tions in neuronal activity. Consistent relationships have been found be-
tween local fluctuations in at-rest BOLD and spikes (Magri et al., 2012;
Shmuel and Leopold, 2008), band-limited LFP power (Magri et al., 2012;
Pan et al., 2011; Shmuel and Leopold, 2008; Thompson et al., 2013) and
infraslow LFP (0.01 - 0.1 Hz) (Pan et al., 2013). Nir et al. (2008) demon-
strate long-range correlations in neuronal spiking that occur at roughly
the same time scale as resting-state BOLD correlations (Nir et al., 2008).

Resting-state correlations also exist in band-limited LFP power and in
infraslow LFP (He et al., 2008; Li et al., 2014). The spatial structures
of these electrophysiological correlations match those of BOLD correla-
tions. The spatial match to BOLD correlations is particularly good for
infraslow LFP (He et al., 2008), suggesting that the processes underly-
ing infraslow LFP may be closely related to those underlying correlated
BOLD signals (Khader et al., 2008). However there has been no direct
demonstration in a primate model showing a consistent relationship be-
tween, on the one hand, correlations in BOLD recorded at two locations,
and on the other hand, correlations in any electrophysiological signals
recorded at those same two locations. This gap is an important one to
fill, since infraslow LFP and LFP power could be driven, in whole or in
part, by non-neural elements such as glia or by hemodynamic processes
(for review see Khader et al., 2008) and BOLD signals are also affected
by non-neuronal sources (Birn, 2012; Schulz et al., 2012; Tong et al.,
2015; Wang et al., 2018). Thus, it is possible that long-range correla-
tions in the different signal types could be driven by different sources.
To definitively establish the temporal relationship between corre-
lated oxygen and correlated electrical activity, the two signals must be
recorded simultaneously. To our knowledge, this has only been done
in mice (He et al., 2018; Kozberg and Hillman, 2016; Murphy et al.,
2018; Vazquez et al., 2014). Using a system to simultaneously record
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Fig 1. Lagged linear correlation between oxygen and electrophysiological signals recorded from the same site. A) Lagged correlation between oxygen and the raw
LFP signal recorded in IPS (For V3 and PCC, see Fig. S6). Both the raw LFP signal and the oxygen signal were split into many frequency bands, and then correlations
were calculated band by band. The X-axis denotes lag, the Y-axis denotes the frequency band and the color scale denotes correlation strength. Positive lags mean
that electrophysiological signals were shifted forwards in time before computing the correlation. Correlations were most prominent at infraslow frequencies (0.01 to
0.1 Hz) with little or no lag. B) Lagged correlation between oxygen and LFP power. Format is the same as A, except that once LFP power was computed, both the LFP
power signal and the oxygen signal were filtered at 0.01 to 0.1 Hz, prior to computing the correlation. Correlations were most prominent for gamma band power,
with a lag of ~6 s. C) Lagged correlation between infraslow oxygen and infraslow LFP voltage (see panel A), infraslow band-limited LFP power within standard
EEG bands (see panel B), and infraslow MUA. Infraslow LFP, gamma power and MUA have the strongest correlations with oxygen, significantly stronger than the
next-highest correlated signal (Infraslow LFP vs. beta LFP: p < 0.05, t(58) = 2.414; gamma LFP vs. beta LFP: p < 0.05, ¢(58) = 3.378), but not significantly different
from one another (p = 0.8, t(58) = 0.2121). Peak correlation for infraslow LFP is at 0.5 s, which is much shorter than that for gamma power (5.8 s).

oxygen levels and electrophysiology in non-human primates that cap-
tures slow, long-range oxygen correlations similar to those seen with
BOLD fMRI (Li et al., 2015), we demonstrate that similar correlations
exist in the firing rate of extracellular action potentials (spiking activ-
ity), that spikes in one hemisphere are correlated with oxygen levels
in homotopic cortex in the other hemisphere, and that infraslow LFP is
the strongest electrophysiological predictor of cross-hemisphere oxygen
correlations.

2. Results

2.1. Lagged correlation and single spike responses of oxygen and infraslow
LFP

We simultaneously recorded from four sites in two different func-
tional networks in awake monkeys resting quietly in a dark room and
examined correlations between signals (Supplemental Fig. S15). Two
of the recording sites were in left and right posterior cingulate cor-
tex (PCC), which is part of the task-negative default mode network in
macaques. (Vincent et al., 2007). The other sites were either in left and
right V3 (visual network; monkeys P and L) or left and right intraparietal
sulcus (IPS) (attention network; monkey E). In macaques, these areas
participate in task-positive networks functionally involved in visual pro-
cessing, oculomotor control, and attention (Babapoor-Farrokhran et al.,
2013; Felleman et al., 1997; Hutchison et al., 2012; Mars et al., 2011;
Vincent et al., 2007). Single-unit spiking activity, multi-unit activity
(MUA), LFP, and oxygen signals were recorded simultaneously from
each site. We first examined the local relationships between infraslow
oxygen and an array of electrophysiological signals. From LFP, we ex-
tracted both the band-limited power of LFP signals and the infraslow
(0.01-0.1 Hz) fluctuations of raw LFP voltage.

To examine the temporal relationships between signals, we identi-
fied the direction and amount each electrophysiological signal had to be
shifted (in time) to maximize the absolute value of its cross-correlation
with oxygen. Results for most signals were similar across regions, but
are shown separately in Fig. 1 (IPS) and Fig. S6 (V3 and PCC). Every
tested electrophysiological signal leads oxygen (Fig. 1). Fig. 1A shows
the lagged correlation between infraslow (0.01-0.1 Hz) oxygen and raw
LFP signals at different frequencies. The correlation is prominent in low
frequencies (below 0.3 Hz; see also Supplemental Fig. S4), peaking at
0.05 Hz with LFP leading (preceding) oxygen by 0.5 s. Fig. 1B shows the
lagged correlation between infraslow fluctuations of band-limited LFP
power and infraslow oxygen signals. This analysis reveals strong lagged
correlations above 30 Hz, peaking at 76 Hz with LFP power leading oxy-
gen by 6 s. Fig. 1C shows cross-correlations between infraslow oxygen
and conventional LFP power bands, infraslow LFP and MUA. Of these,
oxygen most strongly correlates with infraslow LFP, gamma power and
MUA across all recorded regions (Fig. S6). Infraslow LFP and gamma
power have slightly higher correlation coefficients than MUA. Gamma
power and MUA lead (precede) oxygen by 6 s. Beta, alpha and theta
power show lower peak correlations at longer leads (8-20 s) and with
considerable interregional differences (Fig. S6). Previous studies have
also reported that electrophysiological signals lead oxygen, although the
lead varies across studies (3-8 s) as does the particular frequency band
with the strongest correlation, likely due to differences in species or be-
havioral state (Magri et al., 2012; Murayama et al., 2010; Pan et al.,
2011; Scholvinck et al., 2010; Shmuel and Leopold, 2008). Infraslow
LFP leads oxygen by only 0.5 s, much less than any other electrophys-
iological signal. (This is also much shorter than the LFP lead found by
Pan et al. (2011) [2.5 s under DMED, and 4 s under ISO], perhaps re-
flecting a difference between awake monkeys and anesthetized rats.)
To summarize these results, we see that there is coupling between a
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Fig. 2. Spike-triggered average of oxygen, LFP voltage and
gamma-band LFP. Spikes are aligned at time zero. The
top left shows a 60 s (60,000 ms) window around the
spike, with expanded views in the insets. Raw LFP (blue)
and oxygen (red) show a slow drop starting ~8 s before
the spike. LFP has a strong negative transient around the
time of the spike that lasts for ~2 s. Riding on top of
this is a small (~1 uV), brief (< 20 ms) negativity almost
exactly coincident with the spike (insets on right). This
brief negativity likely represents contamination of the
high frequency spike onto the LFP signal, while the bulk
of the negativity has a duration that is too long (more
than 1000 times the duration of a spike) to be explained
in this way. After the spike, oxygen and raw LFP each

show a delayed increase that peaks around 6 s, slowly
falls back toward the baseline, and then overshoots and
becomes slightly negative for ~10 s. The late slow re-
sponses in oxygen and raw LFP closely match each other,
with raw LFP leading by about 0.5 s. Gamma LFP power
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range of electrophysiology signals and oxygen. After low-pass filtering
most of these signals, including in particular unit activity and gamma
power, they still lead oxygen by at least 6 s. In contrast, applying the
exact same low-pass filter to the LFP voltage signal yields a signal which
leads oxygen by only ~0.5 s. Thus, the temporal coupling between elec-
trophysiological signals and oxygen is tightest for infraslow LFP.

To further explore the temporal relationships between spikes, LFP
and oxygen, we computed the spike-triggered average of oxygen, as well
as gamma and infraslow LFP (Fig. 2). Results were similar across regions
(Fig. S7) and therefore combined. On average, oxygen increases rapidly
one second after a spike, peaking after 6.1 s, falling back to baseline after
20 s and then undershooting baseline slightly for ~10 s. This bears some
resemblance to the transfer functions that relate task-evoked gamma to
oxygen concentration (Bentley et al., 2016) and to the BOLD signal itself
(Logothetis et al., 2001). It also resembles the cross-correlation functions
between (1) spontaneous BOLD and gamma BLP and (2) spontaneous
BOLD and MUA reported by Shmuel and Leopold (2008), although there
is controversy over whether their recordings captured spontaneous or
evoked activity (Logothetis et al., 2009; Shmuel and Leopold, 2008). In
contrast to oxygen, the spike-triggered average of gamma power shows
a symmetric elevation that is greatest at the time of the spike (+ 1 s) and
returns to baseline within 8 s. Surprisingly, the spike-triggered average
of raw LFP has a slow response that is almost identical to the oxygen re-
sponse, though it leads (precedes) oxygen by 0.5 s. Similar results were
obtained using either a 0.01 or 0.07 Hz high-pass cut-off for the LFP
recording (Supplemental Fig. S5). The fact that oxygen slightly lags but
otherwise tracks the infraslow changes in LFP, without the need for an
intervening transfer function, is consistent with (but does not prove) a
common cause or direct causal relationship between processes underly-
ing the two signals. An alternative explanation for the similar response
shapes, that low-frequency changes in field potential somehow affect

-18 § (green) rises slowly prior to the spike, peaks abruptly at
= the time zero, then shows a symmetric decrease (inset on
19 ‘I,_'l bottom left). Power is elevated from + 8 s around time
T  zero, though the strongest response occurs within +1 s
‘= of the spike (For interpretation of the references to color
' 20 in this figure legend, the reader is referred to the web
' version of this article.).
0 0.05
Time (s)

our oxygen measurement, can be ruled out by the fact that contamina-
tion would affect the oxygen and LFP measures nearly simultaneously
rather than with the observed 0.5 s offset between the two.

The data are consistent with three scenarios: gamma LFP may medi-
ate the spike-oxygen relationship, spikes may mediate the relationship
between gamma LFP and oxygen (though considerable evidence argues
against this possibility; see Logothetis, 2008 for discussion), or spikes
and gamma LFP may each be independently related to oxygen through
similar (and perhaps overlapping) mechanisms.

On a separate note, starting 8 s prior to the spike, both raw LFP
and oxygen drop below their baseline levels (Fig. 2, inset). This could
indicate that the processes underlying one (or both) of these signals in-
fluences spike probability, however the pre-spike drop in oxygen is not
consistent across regions (Fig. S7). Raw LFP shows an abrupt depolar-
ization that begins one second before the spike and lasts for about two
seconds. The duration of this depolarization is far too long to reflect
the electrical activity of the spike itself (Fig. 2, insets to right). It may
instead reflect the tendency of spikes to occur in so-called “up-states”,
that is, periods in which the intracellular potential is elevated close to
threshold and the extracellular potential is depressed (Wilson, 2008).

Immediately after the spike there is a small sudden drop in oxygen
(lower left inset) that is superimposed on the slower drop. This could
reflect a local and transient drop in oxygen similar to that reported by
Thompson et al. (Thompson et al., 2003).

2.2. Spikes predict infraslow LFP, which in turn predicts oxygen

Lagged correlations (Fig. 1C) and spike-triggered averages (Fig. 2)
suggest the relationship between infraslow LFP and oxygen is lower la-
tency and less complex than that between spikes or gamma LFP and
oxygen. This observation is consistent with several causal explanations,
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Fig. 3. Multivariate Granger causality analysis be-
tween oxygen and electrophysiological signals. Each
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nal (column) improve when its predictor signal
(row) is included in the model alongside the rest
of the signals (see Methods). (A) Top, oxygen does
not improve forecasts of any electrophysiological
signal (first row), only infraslow LFP (LFPyg) im-
proves oxygen forecasts (first column), infraslow
LFP forecasts are most improved by MUA (fourth
column), and MUA improves forecasts of every
other signal except oxygen (second row). Bottom,
a graph of the Granger causality result. Arrow
widths correspond to the magnitude forecast im-
provement, which is quantized into five categories
(> 0.1, 0.1-0.05, 0.05-0.04, 0.04-0.03, 0.03-0.02;
for Granger causality > = 0.02, p < 0.01). Weak
improvements (< 0.02) are not shown. (B) When
infraslow LFP is excluded from the analysis, MUA
and gamma both improve oxygen forecasts (first
column). Data are from V3 and PCC; see Supple-
mental Fig. 8 for region-specific responses.
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none of which can be definitively ruled out without (future) interven-
tional experiments. To better understand which explanations are more
likely based only on the current data, we examined the unique predictive
utility of each signal with respect to all of the other signals using multi-
variate Granger causality analysis (Fig. 3, see Methods). MUA improves
forecasts of LFP and gamma power. Oxygen forecasts are most improved
by infraslow LFP (p < 0.001, with correction for multiple comparisons),
while infraslow LFP forecasts are most improved by spikes (p < 0.001,
corrected for multiple comparisons). It is of note that a connection be-
tween gamma power and oxygen appears only when infraslow LFP is
excluded from the analysis (Fig. 3B). Multivariate Granger discounts
predictability that is not unique to a particular signal. Thus if both in-
fraslow LFP and gamma power predict future oxygen, then to the extent
that some of that predictive power is common to the two signals, the
predictive power will not be reported (see Methods). Finally, infraslow
LFP has a small feedback effect on spikes and gamma LFP, which could
correspond to the infraslow LFP change that precedes the spike in the
spike-triggered average. The key findings were similar across regions
and robust to 10-fold changes in the temporal window of the analysis
(Supp. Fig. 8).

2.3. Oxygen correlation tracks correlation in the spiking activity of neurons

Next we asked whether electrophysiological signals, especially sin-
gle units and MUA, show long-range, network-aligned correlations sim-
ilar to those found previously in BOLD and in polarographic oxygen
(within-modality correlations). We distinguish two types of long-range
correlations. Within-network correlations are measured within a single
network, e.g., between left and right PCC, or between left and right V3.
Across-network correlations are measured between two different net-
works, e.g. between left PCC and right V3. We found, in agreement
with a previous report (Li et al., 2015), that within-network correla-
tions are mostly similar to each other (oxygen correlation[left PCC-
right PCC]=0.51 + 0.08 [Pearson’s r], oxygen correlation[left V3-right
V3]=0.41 + 0.07; oxygen correlation[left [PS-right IPS]=0.29 + 0.08; p
(PCC vs. V3)=0.2, p (IPS vs. V3)=0.1), and that the two across-network
correlations, within and across hemispheres, are also similar to each
other (oxygen correlation[V3-PCC, within hemisphere]=0.24 + 0.04, oxy-
gen correlation[V3-PCC, across hemisphere]=0.21 + 0.04; p = 0.2). We
therefore group our results into “within-network” and “across-network”
(results by region are shown in Supplemental Fig. S9). We considered

a range of electrophysiological signals, including raw LFP, band-limited
LFP power, multiple unit and single unit activity. We do not apply global
signal regression (see Methods), which is commonly used in rsfMRI anal-
ysis to reduce widely shared variance arising from a mixture of neuronal,
non-neuronal and artifactual effects (Murphy et al., 2009; Murphy and
Fox, 2017; Power et al., 2014, 2018; Scholvinck et al., 2010). It remains
unclear how the relationship between fMRI data and neural activity is
affected by global signal regression.

Fig. 4A shows that raw LFP shows significant correlation across re-
gions, and that within-network correlation (red) is significantly stronger
than across-network correlation (blue). Correlations are present and sig-
nificantly greater than zero from 0.006 to 200 Hz. Correlation peaks at
0.05 Hz and rolls off gradually at higher frequencies. Correlation drops
steeply for frequencies below 0.01 Hz, which may be due in part to high-
pass filtering with a —3 dB point at 0.07 or 0.01 Hz (see Materials and
Methods, Recording). Within-network correlation is substantially and
significantly greater than across-network correlation from 0.03 to 8 Hz,
with small but significant differences persisting up to 30 Hz. One can
also consider correlations in LFP power. In computing LFP power, there
are two different frequencies that need to be taken into account. First,
there is the underlying frequency at which we measure power. A pure
60 Hz sine wave, for example, has power at 60 Hz but not at any other
frequency. Second, we can consider changes in power at a particular
temporal scale. The temporal scale we are most interested in is that of
long-range oxygen correlations (MRI-based resting-state functional con-
nectivity), that is, the infraslow range from 0.01 to 0.1 Hz. We therefore
consider band-limited power, computed over a small range of frequen-
cies, and then filtered to consider only changes in the power envelope
that occur in the infraslow range. Fig. 4B shows that band-limited LFP
power, like oxygen and like raw LFP, shows significant long-range cor-
relation, and that this correlation is larger within-network (red) than
across-network (blue). The correlation difference is substantial and sta-
tistically significant for frequencies from 0.04 to 200 Hz. (The maxi-
mum frequency was limited by the LFP sampling rate.) The correla-
tion increases with frequency up to around 55 Hz (within the gamma
band) and falls off for still higher frequencies. To summarize, correla-
tion in the raw LFP is strongest at low frequencies, centered around
0.05 Hz, while correlation in band-limited LFP power is strongest at
high frequencies, centered around 55 Hz. Such correlations within raw
LFP and band-limited LFP are robust across our recording configura-
tions (Supplemental Fig. S3). Several studies have looked at non-linear
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Fig. 4. Within-mode electrophysiological and oxygen correlations. (A). Long-range correlation in raw LFP signal by frequency, within-network (red) versus across-
network (blue). Correlation is present in a wide range of frequencies (0.006-200 Hz). Peak correlation is around 0.05 Hz (within-network: 0.055 Hz, across-network:
0.049 Hz). (B). Long-range correlation in LFP power. LFP power was computed at half octave bands and the power at each band was then filtered to 0.01-0.1 Hz and
used to compute long-range correlations. The strongest correlation was in the gamma band (55 Hz). Within-network correlations were greater than across-network
correlations at all frequencies. (C). Like LFP, single and multi-unit activities show significant long-range, infraslow network-dependent correlations (top center and
right) similar to those in oxygen (top left) and LFP (lower two rows). Correlations are significantly higher for within-network than across-network correlations in every
case (oxygen: t(151) = 4.2365; single-unit: t(78) = 1.997; multi-unit: t(151) = 7.1176; infraslow LFP: t(151) = 3.2154; delta: t(151) = 2.2663; theta: t(151) = 3.6047;
alpha: t(151) = 5.5918; beta: t(151) = 8.2037; gamma: t(151) = 9.2618; for single-units n = 20 within-network and n = 60 across-network; for all other signals
n = 34 within-network and n = 119 across-network) and are significantly lower for single units than for multi-units (note different scales). For all 9 signals shown in
C, correlations are computed within the frequency range of 0.01-0.1 Hz. *** = p < 0.001; ** = p < 0.005; * = p < 0.05. Data are combined across regions (see Fig.
S9) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

relationships between LFP bands, as well as cross-frequency coupling, MUA, p < 0.001) (Li et al., 2015; Murphy et al., 2009). The reduced

the relationship between the low frequency raw LFP signal and the high
frequency LFP band-limited power (He et al., 2010; Ko et al., 2011).
Though interesting, these topics are beyond the scope of the current
study.

Unit correlations were computed using firing rates filtered to 0.01-
0.1 Hz. Fig. 4C shows that long-range infraslow correlations are present
in both MUA and single units, and that the unit correlations show
a spatial pattern similar to long-range low-frequency correlations in
oxygen polarography (top row), as well as raw LFP and band-limited
LFP power (middle and lower rows). In particular, like oxygen correla-
tions, both within- and across- network unit correlations were positive
(Pwithin < 0.001 and p,eross < 0.001) and consistently higher within-
network than across-network (oxygen, p < 0.001; single units, p < 0.05;

correlation of single units compared to multiple units (r = 0.16 ver-
sus 0.55 for within-network) is to be expected, since the MUA signal is
pooled over many individual single units. The mean single unit corre-
lation would be comparable to the multiunit correlation only if every
neighboring single unit carried identical or nearly identical signals; this
is clearly not the case.

Next we asked whether correlations in unit activity occur within
the same frequency range as correlations in oxygen. Fig. 5A shows
that, like long-range oxygen correlations, both single-unit and multi-
unit correlations are band-limited. This is consistent with our previous
results, though the literature is mixed on this point (see Discussion in
Li et al. 2015). The peak correlations are similar, though slightly lower
in frequency for units (0.03 Hz for MUA, 0.04 Hz for single units) com-
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pared to oxygen (0.06 Hz). Unit correlations extend farther in both di-
rections compared to oxygen, for a full-width at half-max bandwidth of
about 1.5 decades for oxygen, 2 decades for single spikes and 3 decades
for MUA. The attenuation of oxygen correlation at the high end of this
band, relative to spike correlation, is consistent with the high-cut filter-
ing characteristics of the hemodynamic transfer function (Bentley et al.,
2016; Logothetis et al., 2001). The attenuation of oxygen correlation at
the low end of this band, and the shift to a higher peak correlation fre-
quency compared to unit activity, are consistent with a low-cut filtering
effect, perhaps related to the post stimulus undershoot in the hemo-
dynamic response function. However, apart from this, the patterns of
single-unit, multi-unit and oxygen correlations are all roughly similar,

Frequency (Hz)

with the highest correlations occurring in the range from about 0.01 to
0.1 Hz.

The similarity between the frequency distributions of spike and oxy-
gen correlations might easily be explained if spike and oxygen signals
were themselves similarly band-limited. This is not the case, however.
For spikes as well as oxygen, the local power drops with increasing fre-
quency over a very wide range (Fig. 5B). Therefore the similarities be-
tween long-distance spike correlation and long-distance oxygen correla-
tion are not inherited from the local power spectra. Furthermore, note
that the peak in long-distance correlation in all three signals roughly
corresponds to a point of maximum positive deviation from a 1/fp fit
to the local power. This is consistent with a model in which there are
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Fig. 6. Lagged correlation between oxygen and multi-unit activity within a site (lo-
cal) and across sites separated by at least 1 cm (distal). Black: the mean lagged
correlation between oxygen and multi-unit activity recorded from the same (lo-
cal) site; red: the correlation between oxygen and multi-unit activity recorded
from distal sites, both in the same network; blue: the correlation between oxygen
and multi-unit activity recorded from distal sites, each from different networks.
Data are combined across regions; for individual regions see Fig. S12 (For inter-
pretation of the references to color in this figure legend, the reader is referred
to the web version of this article.).

two separate and at least partially independent sources of variance: one
source or set of sources with only local influence and 1/f characteristics,
and a second source or set of sources that influences signals at distal lo-
cations and has band-limited characteristics (Li et al., 2015).

Returning to the issue of whether oxygen correlations reflect cor-
relations in neuronal activity, we directly compared oxygen and unit
activity. To account for any hemodynamic delay, we computed lagged
correlations. Local oxygen and local multi-unit activity are correlated
with each other (Figs. 1 and 6, black), reaching a peak correlation at
a lag of 6 s (spikes leading, oxygen following). Importantly, we also
found that oxygen at one site is significantly correlated with multi-unit
activity at distal sites with a similar delay (Fig. 6). The fact that spike-
associated oxygen fluctuations occur simultaneously across sites support
the view that correlated oxygen fluctuations arise in part due to corre-
lated spiking activity. These cross-modal long-distance correlations are
present both within and across networks. Local correlations are signif-
icantly stronger than distal correlation, and within-network distal cor-
relations are stronger than across-network distal correlations (local vs.
within network: p < 0.05, t(232) = 2.6248; within network vs. across
network: p < 0.05, t(302) = 7.7811; statistics computed at a lag of 6 s).
Together, these results strongly support the idea that oxygen correlation
reflects correlated neural activity.

2.4. Infraslow LFP accounts for long-range oxygen correlation

We next asked which electrophysiological signal — spikes, infraslow
LFP, or band-limited LFP power - best explains long-range oxygen cor-
relations. Fig. 5 suggests that only a small, band-limited portion of the
total local variance in oxygen (right column) is shared across distal sites
(left column). The electrophysiological signals that best explain this re-
stricted fraction of oxygen variance may differ from those that best ex-
plain the much larger local variations.

To address this possibility we developed a regression-based correla-
tion dependence analysis. This analysis determines whether the shared
variance between oxygen signals is the same as the shared variance be-
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tween oxygen and electrophysiological signals by calculating how much
oxygen correlations decrease after regressing out electrophysiological
signals simultaneously recorded from the same locations (see Fig. 7 and
Methods). This analysis indicates that the component of local oxygen
variance underlying long-distance oxygen correlations is best explained
by local infraslow LFP, which accounts for 72% of within-network oxy-
gen covariance and 57% of across-network covariance (Fig. 7). Gamma
power is the next closest contender, but explains significantly less oxy-
gen covariance than does infraslow LFP (P < 0.05, paired t-test, with
correction for multiple comparisons). (Note that error bars in the plot
capture pooled variance, while statistics are computed pairwise and
therefore are more powerful.) Multi-unit activity has the third strongest
relationship to long-distance oxygen correlations.

3. Discussion

We measured correlates of infraslow cortical tissue oxygenation in
an awake monkeys at rest. Infraslow LFP stands apart from all other
electrophysiological signals as a correlate of oxygen, both at the local
level (within an MRI voxel) and when comparing activity simultane-
ously recorded from distal sites within and across resting-state networks.

The local relationship between infraslow LFP and oxygen is unique in
several respects. Infraslow LFP leads oxygen by ~500 ms, whereas spikes
and LFP power (delta through gamma bands) lead oxygen by more than
six seconds (Fig. 1). The short lead time of infraslow LFP does not re-
flect cross-talk between our recording systems, which would be instan-
taneous. After accounting for time delays, infraslow LFP is significantly
more correlated with oxygen than any electrophysiological signal save
gamma LFP power, which shows comparable correlation after a consid-
erably longer delay (Fig. 1). Finally, the spike-triggered average (STA)
of raw LFP features an infraslow post-spike response that is nearly iden-
tical to the STA of oxygen, but again leads oxygen by ~500 ms (Fig. 2).
Because these data were collected in the resting state rather than during
a task, it is unclear to what extent the spikes that we record are clus-
tered in time and space (regardless, we of course do not mean to imply
that a single action potential determines the functional connectivity of
the entire brain). Together, these findings strongly suggest a unique re-
lationship between the processes and mechanisms underlying infraslow
oxygen and infraslow LFP, as compared to other electrophysiological
measures. Further, the lag between infraslow LFP and oxygen is the
same whether we consider spike-associated activity or full time-courses,
consistent with overlap between the mechanisms relating infraslow LFP
and oxygen to each other and to spikes.

While we use an STA to reveal the post-spike responses, we do not
mean to imply that single action potentials determine the functional
connectivity of the entire brain. While these data were collected in the
resting state rather than during a task, the single unit panel of Fig. 4C
demonstrates that there is clustering of spikes in time and space. The
relationship between infraslow LFP correlations and long-range oxy-
gen correlations also stands out. Infraslow LFP accounts for most of
the correlation in oxygen, significantly more than any other signal con-
sidered in this study. While we observed network-aligned long-range
correlations in all electrophysiological signals, correlation is highest
at infraslow LFP frequencies and in infraslow fluctuations of higher-
frequency LFP power. Long-range spike correlations are also highest at
infraslow frequencies. Intriguingly, Granger causality analysis suggests
that infraslow fluctuations in multi-unit spiking activity drive colocal-
ized infraslow fluctuations in LFP, which in turn drive infraslow fluctua-
tions in oxygen. Together, these findings suggest that the neural activity
and neurovascular coupling mechanisms relating oxygen and infraslow
LFP to each other and to spikes at the local level may underlie the bulk
of long-range oxygen correlations.

Our findings stand in contrast to (but do not contradict) previ-
ous reports that identify gamma LFP (Goense and Logothetis, 2008;
Logothetis et al., 2001; Shmuel and Leopold, 2008) and MUA
(Shmuel and Leopold, 2008) as the best electrophysiological corre-
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Fig. 7. Regression-based dependence analysis on oxygen correlation. Left: dependence analysis determines whether the shared variance between oxygen signals is the
same as the shared variance between oxygen and MUA activity (or any other electrophysiological signal). Middle: oxygen correlation before (red asterisk) and
after (colored circles) regressing out linearly transformed electrophysiological signals (see Methods). Regressing out infraslow LFP (LFPyy;) had the greatest effect
on oxygen correlation, substantially reducing both within- and across-network correlation (within-network: n = 27; across-network: n = 84). Right: Infraslow LFP
accounts for 72% of the covariance underlying within-network oxygen correlation, and 57% of the covariance underlying across-network correlation. Gamma power
accounts for 46% of within-network oxygen covariance and 37% of across-network covariance. MUA accounts for 43% of within-network oxygen covariance and 31%
of across-network covariance. Other electrophysiological signals account for only 10-42% of oxygen covariance. Data are combined across regions, for individual

regions see Fig. S14.

lates of the BOLD signal. Gamma LFP power exhibits higher long-range
within-mode correlation than infraslow LFP (Fig. 4c), and infraslow LFP
and gamma LFP power are equally well correlated with local oxygen
variance (Fig. 1c;), yet infraslow LFP best accounts for the relatively
small fraction of local oxygen variance that underlies long-distance
oxygen correlations (Fig. 7). This apparent dissociation between long-
range oxygen and electrophysiological correlations could be explained
by a neuronal process that drives long-range correlation of band-limited
gamma power in the 0.01 to 0.1 Hz range, but has a less effect on oxy-
gen levels than the processes underlying infraslow LFP. This is in turn
consistent with the idea that different frequency components of electri-
cal signals may reflect the activity of different neural processing path-
ways (Buice and Chow, 2013; Magri et al., 2012; Tong et al., 2015).
Another relevant point is that gamma band power and infraslow LFP
amplitude may be differentially contaminated by non-neural processes
or by noise, which may then differentially affect both long-range cor-
relations and correlations with local oxygen. In summary, although in-
fraslow LFP does not exhibit the strongest within-mode long-range cor-
relation among the electrophysiological signals, this does not preclude
it from being the best predictor of long-range oxygen correlations.

There are many potential sources of infraslow LFP fluctuations, and it
is likely that, at any given location, multiple such processes unfold more
or less independently of one another. Here, we focus only on those that
offer a clear potential explanation of the main observations described
in this report. The infraslow LFP could reflect an elevation in astro-
cyte calcium waves, which have been proposed to help control blood
flow (Hillman, 2014). This could explain the strong coupling and rel-
atively short delay between infraslow LFP and oxygen changes. This
explanation requires that astrocytic processes be spatially aligned, else
the voltage gradients would cancel one another and not be detected by
our electrodes. Alternatively, infraslow LFP could reflect prolonged de-
polarization of pyramidal apical dendrites, which are neatly aligned to
form an open field arrangement capable of generating strong changes
in potential (Mitzdorf, 1985). If true, this would imply that infraslow
LFP signals reflect inputs that drive changes in excitability, which then
manifest as changes in spiking activity. However, in the resting state,
spike-triggered averaging and Granger causality analysis show that spik-
ing activity leads and may drive the infraslow LFP; the reverse (slow
LFP influencing spike rate) may occur but is at best only a weak effect
(Schmidt et al., 2014).

Our data are most consistent with infraslow LFP reflecting a process
that occurs following spikes. For example, infraslow LFP could corre-

spond to a membrane hyperpolarization that arises from a slow recov-
ery of voltage-gated sodium channels from the inactivation state follow-
ing action potential generation (Mickus et al., 1999; Ogata and Tate-
bayashi, 1992; Toib et al., 1998). However, this interpretation does not
offer a clear explanation of the close correspondence between infraslow
LFP and infraslow oxygen. Future studies combining intracellular and
extracellular recordings with pharmacological approaches to manipu-
late channels may elucidate the physiological processes underlying both
signals, as well as their relationship to brain function.

Our principle findings have clear antecedents in the literature. We
were able to show that spikes, like oxygen, show long-range correlation
(Fig. 4) because we considered correlation on a time scale of seconds.
Many previous studies focused instead on a scale of milliseconds, and as
a result are blind to slow correlations. However, long-range slow spike-
spike correlations have been previously reported in human bilateral au-
ditory cortices (Nir et al., 2008). Ma et al. (2016) described a close rela-
tionship between correlated bilateral fluctuations of excitatory neuron
calcium levels and optically recorded hemoglobin (Ma et al., 2016). Sim-
ilarly, several studies have anticipated our finding that the infraslow LFP
signal is well correlated with oxygen (He et al., 2008; Li et al., 2014).
This relationship has eluded wider observation in part because of a long
tradition of looking at EEG power rather than the raw (unfiltered) LFP
signal, and in part because most off-the-shelf systems for recording LFP
incorporate high-pass filters that eliminate infraslow LFP. Finally, we
were able to more directly establish the relationship between infraslow
LFP and correlated oxygen (Fig. 7) because we focused our analyses on
the correlated oxygen signal. The correlated oxygen signal differs sub-
stantially from the local oxygen signal; the former has bandpass char-
acteristics while the latter is 1/f (Fig. 5, top row). While gamma power
can be linearly transformed (via a hemodynamic function) to resemble
the local oxygen signal, it has a significantly weaker relationship than
infraslow LFP with long-range oxygen correlation. In contrast, infraslow
LFP has a strong relationship with both local oxygen levels (Figs. 1-3)
and long-range oxygen correlation (Fig. 7).

4. Materials & methods
4.1. Animals and behavior

Three macaques served as subjects in this study. Animals were cared
for and handled in accordance with the Guide for the Care and Use of
Laboratory Animals, and all procedures were approved by the Washing-
ton University Animal Studies Committee. During recording, macaques
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were fully hydrated and sat head-fixed in a dark room. Behavior was un-
constrained, and the animals had no expectation of a task or reward. An-
imals naturally relaxed in the setup. Eyes were partially or fully closed
14.7 + 6.4%, 28.4 + 7.3% and 85.5 + 2.1% of the time, respectively, for
monkeys P, E and L.

4.2. Recording

A total of 65 sessions were recorded with an average duration
of 50 min. Intracranial oxygen and electrophysiological signals were
recorded simultaneously from both hemispheres (Supplemental Fig.
$15). Some sessions (19 from monkey P, 16 from monkey L) recorded
bilateral PCC and bilateral V3 sites (4 sites total). The remaining 30 ses-
sions (from monkey E) recorded bilateral PCC and bilateral IPS sites (4
sites total). At each site, two electrodes (separated by 0.5 mm) recorded
concurrent oxygen and electrophysiological signals separately. Results
were generally similar for the three monkeys, and thus the data were
combined.

Electrodes were targeted to each area of interest using anatomical
MRI images and physiology (Bentley et al., 2016). Briefly, each animal’s
brain was accessed via bilateral 15 mm (internal diameter) chronic cus-
tom recording chambers. T1 weighted MRI images (MPRAGE; 0.5 mm
isotropic voxels) were obtained using a custom phantom in the cham-
ber that provides visualization of the chamber and allows for the virtual
projection of a chamber-based coordinate system down into the brain. In
one monkey, two small manganese injections were used to validate tar-
geting accuracy by comparing their expected locations to their actual
locations in an MRI image acquired directly following the injections.
Prior to data collection, boundaries for PCC, V3 and IPS recording re-
gions were defined on the MRI image. The positions of PCC, V3 and
IPS were further validated based on their respective oxygen and elec-
trophysiological responses to visual stimulation, which were recorded
immediately before the resting state data (Bentley et al., 2016).

The multi-channel voltage clamp system used to record oxy-
gen signals is described and validated in Li et al. (2015) and
Bentley et al. (2016), and a similar system is described in
Thompson et al. (2003) and (Khine et al., 2003). Oxygen signals (the
clamp’s current) were sampled without filtering and stored at 1 KHz,
then mean-centered offline before analysis. Electrophysiological sig-
nals were recorded using tungsten microelectrodes (Alpha Omega LTD).
Li et al. (2015) includes example traces of both signals (Li et al., 2015).
Electrical activity was filtered, amplified and sampled using the Plexon
MAP system (Plexon, Inc.). For identifying action potentials, data were
filtered from 400 Hz (high pass, 2-pole analog filter) to 8000 Hz (low
pass, 6-pole filter) and stored at 40 KHz. For local field potentials (LFP),
the data presented in the main text and figures (54 recording sessions)
used a 200 Hz 2-pole low-pass filter and 0.07 Hz 1-pole high-pass analog
filter, and were digitized at 1 KHz. A high-pass filter is necessary because
LFP power is roughly inversely related to frequency, and so very low fre-
quencies will saturate the amplifiers. A 1-pole filter reduces the signal
amplitude by half when the frequency halves, and so prevents satura-
tion while still passing through a large amount of low frequency signal.
As a result, we can measure (attenuated) LFP amplitude down to at least
0.001 Hz in this system. However, a low pass filter will impose a phase
shift, with larger impact for lower frequencies. This could affect the raw
LFP analyses associated with Figs. 1, 2 and 7 (LFP power, oxygen and
single unit activity are not affected by this cut-off). To minimize this
distortion, we replaced the 0.07 high pass filter Hz filter with a 0.01 Hz
1-pole analog filter, collected 11 additional data sets from monkey L,
and re-ran these analyses. These results were essentially identical to the
0.07 Hz data, and are presented in Supplemental Results. A second rea-
son to use a high-pass filter is to prevent slow drift in signals. Despite our
unusually low high-pass cut-offs, we saw little evidence for slow drift,
and no evidence of a significant drift in our recordings (Supplemental
Fig. S1).
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Oxygen and electrophysiological recording systems were electrically
isolated from each other using a custom-built optical isolation system.
This system limits possible cross-talk mechanisms to capacitive coupling
to earth. Isolation was confirmed in vitro.

4.3. Analysis

All analyses were performed with custom software written in Matlab
(MathWorks). T-tests were all two-tailed. Oxygen polarographic signals,
like BOLD signals, reflect relative rather than absolute oxygen levels.
Therefore the polarographic signals, like BOLD data, were expressed as
percentage deviation from the mean signal level. High-frequency elec-
trical activity was analyzed offline to extract identifiable action poten-
tials (single unit activity) or multi-unit activity (MUA), applying clus-
tering algorithms in a feature space based on principle component pro-
jections (Offline Sorter, Plexon Inc.). The low-frequency electrical ac-
tivity (“raw LFP”) was notch filtered at 60 Hz to remove power line
noise. The raw LFP signal was used for Figs 1A, 2 and 4A. The raw
LFP signal was further processed to extract band-limited LFP power.
To extract band-limited power, the LFP was first digitally filtered into
five bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-16 Hz), beta (16—
32 Hz), and gamma (32-128 Hz) (We use these bands because they are
established in the EEG literature, and not because we observed well-
separated rhythms with distinct dynamics corresponding to these par-
ticular bands.) A Hilbert transform was applied to compute the power.
Finally, the Hilbert-derived power was digitally band-pass filtered to
0.01 to 0.1 Hz. To extract infraslow LFP amplitude, the raw LFP signal
was digitally band-pass filtered to 0.01~0.1 Hz.

4.4. Heart-rate removal

Cardiac and respiratory activity both drive variance in polarographic
oxygen signals. We estimated and regressed out this variance session-
by-session and site-by-site, following the same procedure described in
(Li et al., 2015).

4.5. Filtering

Most studies report that MRI functional connectivity is most robust
at slow time scales from about 0.01 to 0.1 Hz (Salvador et al., 2008;
Sasai et al., 2011). We previously showed, and replicate in this study,
that the long-distance correlation in the polarographic oxygen signal
lies within this same frequency range (Li et al., 2015). Thus many of
our analyses compare electrophysiological signals to infraslow (0.01 to
0.1 Hz) filtered oxygen signals. This raises a potential confound, ex-
plained below.

A number of our analyses focus on the timing of the relationships
between electrophysiological signals and oxygen, essentially asking: af-
ter a change in signal A, how long is the delay before the corresponding
change in oxygen? On the face of it, this is a straightforward question.
But there is a hidden complication. In most of our analyses, signal A and
oxygen have both been passed through at least one filter, and filtering a
signal can shift it in time. If oxygen has been shifted forwards in time by
a low-pass filter but signal A has not, then the delay between changes in
signal A and related changes in oxygen will increase. This would make
analysis of the timing of the relationship between the two signals hard
to interpret (perhaps meaningless). The problem is actually worse, be-
cause we compare a number of filtered signals to oxygen with the goal
of asking how their temporal relationships to oxygen differ, and what
those differences suggest about the causal relationships driving changes
in oxygen. But if the timing differences arise in large part due to the dif-
ferent filters applied to each signal, interpreting such results becomes
quite difficult if not impossible.

To avoid this confound, we digitally filtered the electrophysiologi-
cal signals (including unit activity, raw LFP, and LFP power) between
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0.01 to 0.1 Hz using the same type-II Chebyshev filter applied to oxy-
gen data before all analyses that use infraslow oxygen, including those
illustrated by Figs 1B,C, 3, 4A-C, 6, and 7. For single and multi-unit
activity, this filtering was applied to the time series representing firing
rate. This filtering also eliminates any confound that might otherwise
arise due to differences in the frequency content of the electrophysio-
logical signals and infraslow oxygen. A similar matching of frequency
content can be achieved by averaging the signal within sequential time
bins (Magri et al., 2012). However, filtering is a more robust procedure
in this regard than binning (Oweiss, 2010).

4.6. Correlation and coherence

Correlation was calculated as Pearson’s r. Lagged correlation be-
tween electrophysiological signals and oxygen was obtained by shifting
the electrophysiological signals forwards or backwards in time before
calculating their correlation with oxygen. The methods used to calcu-
late coherence and the mean expected bias in coherence are described
in Li et al. (2015). For the result reported in Fig. 5, the mean expected
bias was subtracted out so that a value of zero corresponds to the con-
sistency of phase differences that would be obtained by chance were the
null hypothesis true (no coherence).

4.7. Regression-based dependence analysis

In order to determine which signals drive long-range correlations,
one might ask if the correlated portion of two putative driver signals
matches the correlated portion of two putative driven signals. For ex-
ample, given a gamma LFP signal and an oxygen signal from site A, and
a gamma LFP and oxygen signal from site B, one might ask if the corre-
lated portion of the two gamma LFP power signals predicts (matches) the
correlated portion of the two oxygen signals. Unfortunately, although
one can compute a correlation coefficient between two signals, one can-
not accurately extract the correlated signal. The extraction of a corre-
lated component assumes that each of the two individual signals can be
separated into a shared (correlated) component and an unshared (non-
correlated) component. Thus the two original individual signals are to
be separated into three components — one correlated and two uncorre-
lated. Since there are more components than sources, there is no closed
form solution to this problem. A similar argument can be made for three
signals, four signals, etc.

As the number of signals becomes very large, a component that
closely approximates the correlated component can be extracted using
methods such as principle component analysis or independent compo-
nent analysis. The general idea behind these methods is to construct
a coefficient matrix and then use that matrix to determine a weighted
average of the original signals, which constitutes a pseudo-correlated
component (Li et al., 2009). Methods differ on the exact process used
to construct the coefficient matrix. Regardless of the method, the ex-
tracted pseudo-correlated component is a weighted average of the orig-
inal signals, and so the extracted component is inevitably contaminated
to some degree by the uncorrelated components of the original signals.
The amount of contamination depends in part on the magnitude of the
correlation (which reflects the ratio between the correlated and non-
correlated components in the original signals), and on the number of
raw signals used to construct the correlated component.

Supplemental Fig. S2 shows that the amount of contamination de-
creases as the number of raw signals increases. In the case of our data,
we have two sets of two within-network signals (each set corresponding
to one of two functional networks) and four sets of two across-network
signals. The extracted pseudo-correlated component is heavily contami-
nated by local un-correlated signals (38.6% for the within-network com-
ponent, and 63.4% for the across-network component). To reduce con-
tamination below 10%, at least 12 within-network signals and at least 33
across-network signals would be required (Supplemental Fig. S2). (NB
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this means our data cannot provide an uncontaminated “global signal”
for use in global signal regression).

With the difficulty of extracting the correlated component in mind,
we developed a regression-based correlation dependence analysis to de-
termine which electrophysiological signal best accounts for the corre-
lation we see in oxygen signals. Correlation dependence analysis asks
how much the correlation between one pair of signals (a putative driven
signal) may depend on the correlation between another pair of signals
(a putative driver signal). As a simplified example, consider recording
oxygen, gamma and beta signals from sites A and B. Suppose that all
three signals show within-mode correlation, and that the correlated
component of each site’s oxygen signal is linearly predicted by their
respective gamma (but not beta) signals. In this case, regressing out
Agamma (§amma power recorded at site A) from Ayyeen and regressing
out Byamma from Byyyee, will eliminate the correlation between Agyygen
and Bgyyeen. In contrast, regressing out Apeg, from Agyyeen and By, from
Boxygen (respectively) will have no effect on the correlation between
Agxygen a0d Byyoe,. More generally, the extent to which interregional
oxygen correlation diminishes after regressing out a particular electro-
physiological signal reveals the extent to which the correlated compo-
nent of oxygen signals statistically depends on correlated activity re-
flected by that particular electrophysiological signal.

To determine the electrophysiological dependencies of oxygen cor-
relation, we first compute the baseline covariance of oxygen correlation
(0.01-0.1 Hz) using Pearson’s correlation (Covariance e regression])-
We then ask how much of this baseline covariance can be accounted
for by electrophysiological signals. This is accomplished using linear
regression after applying transfer functions to the electrophysiological
signals, as described in Logothetis et al. (2001). A transfer function is
computed separately for each electrophysiological signal (session-by-
session and site-by-site) via the Welsh method (Oweiss, 2010). Briefly,
the data are broken into 5-minute half-overlapping windows. Oxygen
and an electrophysiological signal recorded from an adjacent electrode
are converted into complex exponential form using Fourier transforma-
tion (A (t, PevOwh and Ag(t, PeWELD | respectively). A transfer function
representing the relationship between the electrophysiological signal
and the oxygen level is computed as follows:

Trans ferFunction
_ > [AO(;’ fetvo®f) 4 AE(I,f)e“"L("f)] — [2 Aolt, f)elwo<!./)] * [Z AE(I,f)e’WL(!-f):I
T [Aett, NevetD) — [X A, preween]?

This transfer function is convolved with the electrophysiological sig-
nal and the result regressed out of the oxygen signal, thereby remov-
ing from the oxygen signal all variance that can be predicted by the
electrophysiological signal. Session-by-session and site-by-site compu-
tation allows for different transformations at different sites, accounting
for possible site-specific variability in neurohemodynamic relationships
(Bentley et al., 2016).

The final step in correlation dependence analysis is to compute the
covariance in oxygen that remains after the influence of one electro-
physiological signal has been regressed out (Covariance  fier regression])-
The percentage of the total covariance in the oxygen that is accounted
for by that electrophysiological signal is then simply:

(COU‘”’a”ceBEfureregression - Coua”anceAfterregressian)
% 100%.

Cova”anceBeforeregrexxion

We performed correlation dependence analysis using oxygen and
electrophysiological signals filtered at 0.01-0.1 Hz.

4.8. Granger causality

Multivariate Granger causality was computed to gain further in-
sight into the temporal relationships between signals (Barnett and
Seth, 2014). Granger causality determines whether the history of sig-
nal A and B together can improve the prediction of the future of signal
B, compared to using the history of B alone. If it does, then A is Granger
causal to B. Multivariate Granger causality is an extension of this logic,
where A is Granger causal to B, only when the history of signal A and
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all other signals together improve the prediction of the future of B, com-
pared to using signals excluding signal A. It is important to recognize
that although Granger causality can provide evidence consistent with
causality, it does not provide proof of causality.

Before computing Granger causality, we filtered both oxygen and
electrophysiological signals between 0.01 and 0.1 Hz. We computed
Granger causality using a range of model lengths (up to 10 s) to account
for possible lags in the causal relationship between electrophysiolog-
ical and oxygen signals. The results were similar across model lengths
and recording locations (Supplemental Fig. S8), and we present the re-
sult for a model length of 1 s. Similar to transfer function computation,
Granger causality was also computed session-by-session and site-by-site.
Significance was tested by permuting data across recording sessions in
order to generate a null distribution, against which we compared the
actual results.
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