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A key question in the neuroscience of memory encoding pertains to the
mechanisms by which afferent stimuli are allocated within memory net-
works. This issue is especially pronounced in the domain of working
memory, where capacity is finite. Presumably the brain must embed some
“policy” by which to allocate these mnemonic resources in an online
manner in order to maximally represent and store afferent information
for as long as possible and without interference from subsequent stim-
uli. Here, we engage this question through a top-down theoretical mod-
eling framework. We formally optimize a gating mechanism that projects
afferent stimuli onto a finite number of memory slots within a recurrent
network architecture. In the absence of external input, the activity in each
slot attenuates over time (i.e., a process of gradual forgetting). It turns out
that the optimal gating policy consists of a direct projection from sensory
activity to memory slots, alongside an activity-dependent lateral inhibi-
tion. Interestingly, allocating resources myopically (greedily with respect
to the current stimulus) leads to efficient utilization of slots over time.
In other words, later-arriving stimuli are distributed across slots in such
a way that the network state is minimally shifted and so prior signals
are minimally “overwritten.” Further, networks with heterogeneity in the
timescales of their forgetting rates retain stimuli better than those that are
more homogeneous. Our results suggest how online, recurrent networks
working on temporally localized objectives without high-level supervi-
sion can nonetheless implement efficient allocation of memory resources
over time.
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Signal Retention in Slot-Based Memory Networks 1023

1 Introduction

Working memory is the cognitive system responsible for the temporary
storage, processing, and integration of new information. Central to learn-
ing, decision making, language, and long-term memory, working memory
forms the foundation for higher cognitive function (Baddeley, 1992) and
is thus crucial to understanding how the brain functions overall. Studies
of auditory and visual working memory reveal persistent neural activity
in the prefrontal cortex (PFC) during memory trial delay periods (Funa-
hashi & Kubota, 1994; Joseph et al., 2016; Lara & Wallis, 2015; Shafi et al.,
2007), thought to be the neural substrate for encoding or processing memo-
randa. However, many questions persist regarding the dynamical mech-
anisms embedded within these circuits and the precise nature by which
memory representations are allocated and transformed. Additionally, while
methods of measuring memory capacity in neural circuits are still debated,
studies show there are limits to capacity (Rouder et al., 2011), and neuropsy-
chiatric illnesses have been shown to be correlated with impairments in
working memory capacity as well as the accuracy of memory recall (Lee &
Park, 2005; Glahn et al., 2006). Several works have hypothesized that limi-
tations in capacity are due to a “slot”-based resource schema in which each
independent slot comprising, say, a subnetwork of neurons of finite size is
able to store one or more discrete memoranda (Cowan et al., 2005; Luck &
Vogel, 2013). In these models, slots can be shared across memoranda, but at
a cost to the ambiguity of the stored information. These works and others
suggest that higher cognitive function is dependent on neural circuits al-
locating finite resources effectively for the accurate storage of information,
avoiding redundancy, and budgeting for new demands (Bialek et al., 2007;
Ye et al., 2017; Zaccarian, 2009).

Furthermore, our ability to remember and process information from con-
tinuously encountered stimuli demands that any memory encoding choices
be made in an online manner, requiring presumably prompt and tactful
choices of which of hundreds of thousands of different stimuli (or vari-
ous dimensions of those stimuli) to store, to what degree, and how. Such
massive spatiotemporal coordination in and among neural circuits would
necessitate the existence of underlying neural mechanisms in order for ef-
fective and efficient encoding to be enacted locally within the network and
still be globally beneficial. In this vein, theoretical neuroscience works em-
ploying formal modeling and analysis have been instrumental in gener-
ating hypotheses regarding how memory function is enacted in the brain
(Chung & Abbott, 2021). Work by Spaak et al. (2017), Murray et al. (2017),
Ghazizadeh and Ching (2021), and Wojtak et al. (2023), among numer-
ous others, proposes that memoranda are encoded and maintained via the
formation of asymptotically stable dynamical attractors or oscillatory dy-
namics (Pina et al., 2018). Further work proposes that both stable and dy-
namic neural activity work together to balance recency and primacy of
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1024 B. Jones, L. Snyder, and S. Ching

information (Lee et al., 2020; Stokes et al., 2013; Spaak et al., 2017), incor-
porating new information over time and without disrupting current encod-
ings. An enigmatic issue in the above theories pertains to how heterogeneity
in the intrinsic timescales of memory networks (i.e., their rates of decay or
“forgetting”) contributes to memory function, in light of observations that
neuronal activity can ramp up and down during delay periods (Zhang et al.,
2015; Murray et al., 2017).

Our goal in this letter is to examine the issue of resource allocation in the
encoding and storage phases of working memory. As noted, working mem-
ory exhibits finite capacity. We propose here that the fundamental global
characteristics of memory circuits—maintaining accurate encodings of in-
formation while allowing for new information to be stored and processed in
an online manner—engender innate encoding strategies in neural circuits
that allow for online and resource-efficient allocation of these resources. We
propose a simplified dynamical model of resource allocation in a math-
ematical instantiation of a slot-based network setting, when memoranda
are encoded in discrete subnetworks. Using this model, we perform formal
control-theoretic optimization to understand how afferent stimuli would be
allocated to these subnetworks under different prioritizations of encoding
accuracy versus frugality with respect to the proportion of slots used for any
given memoranda. Within this framework, we provide new analysis sug-
gesting (1) that greedy allocation of resources at the moment of encoding
may intrinsically promote the retention of signals/information over time
and (2) that heterogeneous timescales of forgetting embedded across slots
carry benefits in terms of allocation efficiency and performance.

2 Model and Control-Theoretic Formulation

We begin by formulating a mathematical model within which we will ex-
plore the theory of how network dynamics can embed memory resource
allocation objectives.

2.1 Slot-Based Network. We begin with a canonical linear dynamical
system composed of N subnetworks, each conceptualized as a memory re-
source or slot,

ẋ(t) = Ax(t) + B(t)u(t), (2.1)

where x(t) ∈ R
N is the state of each slot within the network, whose time

evolution is determined by A ∈ R
N×N. It is important to emphasize here

that x(t) represents neural activity at an abstract, population level and is not
meant to reflect biophysical dynamics of single neurons. By this definition,
in the absence of any stimulus and under the assumption that A is Hurwitz,
then x(t) will decay to zero asymptotically, that is, the subnetworks “forget”
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Signal Retention in Slot-Based Memory Networks 1025

asymptotically. Understanding the policies by which x(t) could be activated
in response to incoming memory demand is the central theoretical issue in
this letter.

Thus, crucial in our network formulation is the input stimulus u(t) ∈ R
d

that impinges on the network via the time-varying gain matrix B(t) ∈ R
N×d.

Formulation 2.1 represents a quite typical linear time-invariant system for-
mulation that is ubiquitous in control theory. However, a key distinction is
that here, we will consider not the design of the external stimulus to direct
the network but rather the gain matrix that gates the stimulus onto the net-
work dynamics and hence memory slots. To enable this analysis, we define
inputs as an impulse train,

u(t) �
∑

k∈Z+
δ(t − tk)βk, (2.2)

where δ(·) is the Dirac delta function and βk is the kth stimuli in sequence,
occurring at time tk. Each stimulus βk ∈ R

d acts as an abstract feature vec-
tor, representing characteristics of the stimulus in d dimensions, where we
assume these representations are concise and avoid excessive redundancy.
In an effort to maintain the generalizability of our work, we do not spec-
ify feature types for each dimension. However, we do make the crucial as-
sumption that d < N: the number of nonredundant features of a stimulus
will always be smaller than the size of the network.

Thus, formulation 2.2 encapsulates two assumptions regarding stim-
uli: that they occur as discrete events in a sequence with potentially ran-
dom timing and that each individual stimulus is described by a finite-
dimensional vector. Such a formulation is sometimes referred to in the
literature as a marked point process. For the purposes of our study into
encoding strategies, we assume each individual stimulus within u(t) is rel-
evant to the network. That is, we do not include a distinction at this stage
regarding the salience or importance of a given stimulus in a sequence (see
also section 4). In this manner, our formulation embeds the notion of a se-
quence of temporally discrete stimuli whose identity must be distributed
onto the network. Figure 1 schematizes the basic setup of our formulation.

2.2 Mnemonic Resource Objectives. Encoding a series of stimuli
within a finite network involves resource allocation. The slots within the
network must be regulated in order to meet the demands of newly arriving
stimuli while also retaining previously held ones. How this regulation is en-
acted will determine the degree to which new stimuli are faithfully stored
versus prior stimuli overwritten. In our formulation, the primary regulator
of incoming stimuli is the gating matrix B(t), which must project stimuli
onto the network in a manner that balances the retention of new and old
signals (Carrillo-Reid et al., 2015; Kessler & Meiran, 2006).
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1026 B. Jones, L. Snyder, and S. Ching

Figure 1: We consider a slot-based model where stimuli are gated onto distinct
memory subnetworks according to a policy. The optimization of the policy is
the central question considered.

To promote analysis of this problem, we will decompose B(t) as

B(t) � b(t)wx, (2.3)

where wx ∈ R
1×d compresses the stimulus into a univariate, scalar signal.

However, we will later see that this assumption is largely for analytical con-
venience, and the ultimate gating policy derived will not meaningfully rely
on wx and will in fact be sensitive to all stimulus dimensions. It follows
from the above definitions that

x(t+
k ) � x(tk) + b(tk)wxβk, (2.4)

where t+
k indicates that the kth stimulus has been gated onto the network.

Our formulation proceeds by defining an optimization problem whose so-
lution will specify the b(t) ∈ R

N, thus yielding a gating “policy.”

2.3 Top-Down Optimization of Resource Gating Mechanisms. We
now proceed to define the core top-down optimization problem consid-
ered. Specifically, we postulate that any policy for the gating vector b(t)
must balance two factors: (1) the accurate encoding and hence allocation
of stimuli as they are received and (2) the minimization of overwriting in
currently occupied memory slots, hence promoting memory retention. In a
resource-constrained network setting, these objectives may be in opposition
(Gorgoraptis et al., 2011).

2.3.1 Encoding Accuracy. In order to model the encoding phase of mem-
ory and measure how accurately a stimulus is stored within the network
dynamics, we define a linear decoder,

z(t) � Cx(t), (2.5)
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Signal Retention in Slot-Based Memory Networks 1027

where C ∈ R
d×N is rank d (and d < N). The variable z(t) provides a lower-

dimensional read-out of the system slots at any given time, creating a means
to translate between the network and stimulus spaces. With the decoder in
hand, the first objective (accurate encoding of stimuli as they are received)
is readily quantified via the instantaneous error between the input and the
decoded network activity:

Jenc(t) � ‖z(t) − u(t)‖2
2. (2.6)

It follows from equation 2.2 that at the time of a specific stimulus, tk, the
input is u(tk) = βk and the encoding error for this kth stimulus is given by

Jenc(t+
k ) � ‖z(t+

k ) − βk‖2
2, (2.7)

where again t+
k indicates the kth stimulus has been gated onto the network.

We note that the definition of the decoder here is made primarily to estab-
lish a surrogate quantity that embeds a reference for how any given stimu-
lus could be allocated to the network slots. Indeed, since the number of slots
is assumed to exceed the dimension of the stimuli in u(t) (i.e., d < N), the
problem of encoding as per equation 2.5 is underdetermined. Thus, as for-
mulated, the encoding maps to a typical least-squares problem, and there
are infinitely many possible configurations of the neural state x(t) that could
be associated with a given βk, that is, achieving J(t+

k ) = 0 in equation 2.7.
Thus, there could be a range of possible policies that preserve encoding
accuracy.

2.3.2 Encoding Frugality. In addition to encoding accuracy, we also con-
sider the storage phase of memory via the extent to which slots are overwrit-
ten by newly arrived stimuli. For this purpose, we use the distance between
the neural state prior and subsequent to a stimulus as a measure of frugality
of the policy:

J f ru(tk) �
∥∥x(t+

k ) − x(tk)
∥∥2

2 . (2.8)

A frugal policy is one that achieves a low value of J f ru, thus implying that
new stimuli are encoded using slots that are already being used. However,
such a policy also likely incurs a high degree of overwriting.

2.3.3 Optimization Problem. Consolidating the above principles together,
we define the memory resource allocation optimization problem as

min
b(tk )

J(tk) = λeJenc(tk) + λ f J f ru(tk) (2.9)

subject to ẋ(t) = Ax(t) + b(t)wxu(t),
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1028 B. Jones, L. Snyder, and S. Ching

z(t) = Cx(t),

x(t+
k ) = x(tk) + b(tk)wxβk,

λe ≥ 0, λ f > 0,

wxβk > 0.

Here the parameters λ f and λe respectively weight the relative importance
of frugality and minimizing error, and we assume wxβk > 0 to guarantee
strict convexity of J(t) (see the appendix). In this way, any solution(s) to
equation 2.9 outline(s) dynamical means to store and maintain signals and
information in the slot-based network model.

2.4 Slot Utilization as a Metric for Memory Retention. In addition to
J f ru, we use a second quantity to characterize how well a policy is retaining
stimuli over time. Specifically, we define the slot overlap,

R(x, y) � |x|T |y|
‖x‖2

∥∥y
∥∥

2

, (2.10)

which is simply the cosine similarity between the entry-wise absolute value
of x and y. For example, R(x(t+

k ), x(t+
j )) ≈ 0 would imply that the kth and jth

stimuli were gated onto a distinct set of network slots. We would interpret
such an occurrence to imply that the memory of the kth stimulus has not
been disrupted by the gating of the jth stimulus.

3 Results

3.1 Resource-Efficient Gating Is Achieved by Lateral Inhibition. From
the definition of our optimization of mnemonic principles, we can now de-
rive the optimal gating policy.

Proposition 1. Given the model network with N slots with dynamics specified in
equation 2.1, input train (see equation 2.2) of stimuli with dimension d < N and
decoder matrix C, the policy to optimize the cost function (see equation 2.9) is given
by

b(t) = 1T (t)b(tk), (3.1)

where 1T (t) is the indicator function over the set of stimulus arrival times T =
{t1, t2, . . .} and

b(tk) = − λe

wxβk
�(λ f , λe)−1CT(

Cx(tk) − βk
)
,

�(λ f , λe) = λ f I + λeCTC.
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Signal Retention in Slot-Based Memory Networks 1029

Proof. The proof proceeds by first establishing that cost function J(t) :
R

N → R
+ is a convex function, and hence a unique minimizer b(t) of J(t) ex-

ists. Subsequently, the minimizer is obtained analytically from the gradient
of the cost with respect to b(t). We note that the crucial assumption N > d
implies the existence of �(λ f , λe)−1. Further details are in the appendix. �

Of note in proposition 1, inaction error Cx(tk) − βk explicitly measures the
difference between the original stimulus βk and that which is decoded from
the network at time tk. Translating this error from the stimulus domain into
the state domain via �(λ f , λe)−1CT , the network is prescribed with the ex-
act action needed to accurately encode βk, modulated by the relative impor-
tance of frugality as well as the embedded decoder.

Clearly, the decoder is central to the gating policy, and there presumably
exists some sensitivity to the choice of C, as discussed below. Equipped with
this solution, we now provide the closed-loop dynamics for our memory
network.
Proposition 2. Given a time-varying system described by a stable network (see
equation 2.1) and decoder (see equation 2.5), stimulus train (see equation 2.2) with
arrival times T = {t1, t2, . . .}, and objective parameters λ f > 0, λe ≥ 0, the state
evolution,

ẋ(t) = Ax(t) + 1T (t)λeξ (t), (3.2)

is the optimal solution to the resource allocation problem (see equation 2.9), where

ξ (t) = �(λ f , λe)−1CT[
βk − Cx(t)

]
,

� = λ f IN + λeCTC.

Proof. The proof is straightforward using theorem 1 and the network def-
inition, equation 2.1, and is further outlined in the appendix. �

The above derivations carry several analytical points and interpreta-
tions. First, b(t) is explicitly dependent on the current stimulus βk as well as
the state of the network, adjusting the burden of the new encoding based on
feedback. This feedback can be conceptualized in a network motif depicted
in Figure 2. Here, a new stimulus triggers a form of lateral inhibition pre-
scribed by A via translation error �(λ f , λe)−1CT , where λe, λ f regulate the
degree of inhibition. Importantly, this network feedback interaction occurs
only at the time of encoding. Thus, the mechanism here amounts to one of
stimulus-triggered gain control from sensory afferents onto memory units.

In this way, the policy equips the network to make optimal encoding and
allocation decisions in an online manner via, in essence, an optimal network
architecture and connectivity weights. In particular, there is no need for ex-
plicit preallocation of resources or centralized knowledge of each subnet-
work’s memory burden at all times. However, the optimal solution is clearly
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1030 B. Jones, L. Snyder, and S. Ching

Figure 2: From equation 3.2, the optimal policy can be interpreted as feedback,
lateral inhibition from memory units that in essence modulate the gain from
sensory projections.

Figure 3: Gating policy optimizes cost objectives. As a function of λ f , (A) en-
coding error (Jenc), (B) frugality cost (J f ru), (C) policy gain ‖b‖, and (D) total cost.
As networks are constrained to be more frugal (as λ f → ∞), the frugality (see
equation 2.8) and policy gain decrease, as expected. Furthermore, the accuracy
of encoded stimuli is maximized, approaching 0, under the edge case of the
accuracy-myopic policy.

established here offline with knowledge of the overall model. Hence, the
issue of how such connectivity could be learned remains unaddressed (see
also section 4).

3.2 Greedy Encoding of Stimuli for Accuracy Distributes Resources.
Equipped with an analytically optimal gating policy, we sought to under-
stand the behavior of the network as a function of key model parameters.
We first considered the extent to which the frugality regularizer (and, by
extension, lateral inhibition in the network interpretation) affected slot uti-
lization. In this regard, it is useful to consider two edge cases. When λ f → 0,
the policy will prioritize immediate encoding of each stimulus accurately,
without regard for any prior stimuli currently being encoded in the net-
work. We refer to this as the greedy or accuracy-myopic policy. But when
λe → 0, the policy is biased toward using only those slots that are already
being used. Figure 3 verifies the effacy of the policy as the frugality regu-
larizer is modulated. By the nature of our formulation, λe and λ f effectively
work inversely from each other, such that λ f → 0 is akin to λe → ∞ and
vice versa. Thus, we illustrate only results of modulating λ f .

Before proceeding, it is important to note that the derived policy has a
degeneracy for the limiting case, λ f = 0. In fact, the cost is no longer strictly
convex in this case, and therefore there is no unique policy when λ f = 0.
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Signal Retention in Slot-Based Memory Networks 1031

Figure 4: Network slot utilization modulated by frugality weight. The rela-
tive importance of encoding frugality and accuracy was modulated via weights
λe = 1 and varying λ f . Information retention in paired postdecision states
x(t+

k ), x(t+
j ) for all j, k were measured via slot overlap (see equation 2.10) for

the (A) accuracy-myopic policy (λ f = 1), (B) moderately frugal policy (λ f =
500), and (C) highly frugal policy (λ f = 1000). With the introduction of the
frugality term, immediately adjacent states (| j − k| = 1) have similar slot uti-
lization, but demands of competing stimuli ultimately shift the state further
from x(t+

k ). (D) The effect on information retention via slot overlap for λ f ∈
{1, 100, . . . , 10000}, averaged across j − k, as well as samples of u(t). As λ f → ∞,
the policy distributes stimuli across slots. Any overwriting of a stimulus that oc-
curs under a frugal policy is more likely immediately after that stimulus. Black
diagonal elements ( j = k) indicate values of 1.

This is readily understood in terms of the previous discussion about Jenc in
equation 2.7, corresponding to an overdetermined least squares problem.
See the appendix for more details.

We sweep over 10 different values of λ f in the range [1, 10,000], where
for each value of λ f , the corresponding policy was assigned to 6 networks
of size N = 80 for a total of 60 networks. The performance of the networks
under each policy was averaged across unique samples of 100 different u(t)
where stimuli were of dimension d = 30 < N, pulled from a uniform distri-
bution U[−100,100], and with stimulus arrival times T = {t1, t2, . . .} kept con-
stant across u(t). For the purposes of this simulation, the time constants of
forgetting were homogeneous across slots and set to μ = −25. Here, since
the dynamics of the autonomous network are linear, the timescales of for-
getting are governed by the eigenvalues of A, that is, A ∼ diag(μ, . . . , μ),
assuming slots are decoupled in the autonomous regime.

Figure 4 illustrates the slot overlap R
(
x(t+

k ), x(t+
j )

)
as a function of in-

creasing temporal proximity of stimuli, j − k, and for several values of
λ f with fixed λe = 1. We can discern two observations from this figure.
First, the λ f regularizer has the desired effect of encoding adjacent (in
time) stimuli in similar slots. However, this effect has an upper plateau at
R

(
x(t+

k ), x(t+
j )

) ≈ 0.25 (for j − k = 1), suggesting a fundamental limit in the
extent of frugality possible for fixed λe. Perhaps more interesting is what
happens in the myopic policy (λ f → 0). As expected, this policy is less fru-
gal in terms of slot utilization than the regularized policies. However, the
extent to which this is true is quite significant, with near-zero correlation
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1032 B. Jones, L. Snyder, and S. Ching

Figure 5: Slot utilization is further modulated by heterogeneity of network
timescales. The eigenvalues of system matrix A determine the decay rates of
the corresponding slots, so we consider the variance σ of the distribution from
which we sample these eigenvalues. Generating sample sets of system eigen-
values from uniform distributions with fixed mean μ = −25, we sweep σ in
[0, σmax) where σmax = −2μ

√
1/12 was found using the mean and variance of a

continuous uniform distribution. All systems also use a fixed decoder matrix
C. (A) Slot overlap for varying degrees of eigenvalue heterogeneity σ , averaged
across j − k and samples of u(t). A greater spread of eigenvalues promotes the
distribution of slots to stimuli, as observed from a decrease in the overlap of ad-
jacent stimuli. (B) Heterogeneity also better minimizes frugality cost than in the
singular case where there is no variation of decay rates. Yet with large λ f , sen-
sitivity to eigenvalue spread decreases. (C) Slot overlap under λ f modulation
with fixed σ = 1.6, again averaged across k and samples u(t).

of slots for even j − k = 1. Thus, under this policy, stimuli are well dis-
tributed over the network. What this means, somewhat paradoxically, is
that through focusing on encoding the immediate stimulus at hand, this
policy nonetheless mitigates the overwriting of prior stimuli already en-
coded in the network. In other words, myopically encoding at the current
time is also conducive to retaining stimuli from the past.

3.3 Heterogeneity of Memory Slot Timescales Encourages Retention.
In a second numerical study, we investigated the impact of network slot
timescale heterogeneity on optimal resource allocation. While A does not
explicitly appear in equation 3.1, the effect of the timescales is nonetheless
manifest via the presence of x(tk) in the specification of b(tk).

With this in mind, we generated more network instances with N = 80
subnetwork slots, modulating the spread of subnetwork timescales—the
variance σ of the distribution from which we sample eigenvalues of A.
Specifically, we generated eigenvalues from a uniform distribution with
mean μ = −25 and varying σ ≥ 0 (rejecting any samples resulting in posi-
tive eigenvalues) and fix cost weights λe = λ f = 1. As before, each network
had a fixed C and bias parameter wx, and we co-evolved them against sev-
eral u(t) of dimension d = 30.

As observed in Figure 5, networks with heterogeneous timescales will
distribute stimuli to a greater degree than those without, as evidenced by a
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Signal Retention in Slot-Based Memory Networks 1033

drop in R(x(t+
k ), x(t+

j )) for temporally adjacent stimuli. That is, heterogene-
ity of timescales equips the network to be more frugal. Of note, this effect
occurs independent of the frugality regularizer, including the case of λ f = 1,
implying that the variability in decay rates across the network will implic-
itly spread the encoding workload even when the objective is effectively
myopic with respect to error. In the case where the network is constrained
to change the state as minimally as possible (as λ f → ∞), the flexibility of-
fered by varying timescales is overshadowed by the cost accrued and the
sensitivity of the network to the spread of its timescales diminishes.

4 Discussion and Conclusion

We examined the problem of resource allocation in large networks in the
face of intermittent novel afferent stimuli. In particular, we outlined key
concepts underlying resource allocation principles of memory and defined
corresponding mathematical objectives. Building from a canonical linear
dynamical system, we derived an online policy that optimizes memory ob-
jectives and is able to be enacted in large networks via a network lateral
inhibition-based architecture. The effectiveness of this policy in terms of in-
formation retention and overall memory, as well as the degree and form
of lateral inhibition, are regulated by the parameterization of the network
via cost weights λ f , λe and timescales of slot decay. Our work highlights
how online, dynamical mechanisms in brain networks may enact specific
memory objectives toward higher-level functions.

4.1 Greedy Policy Retains Memories More Steadily into the Future.
Compared to greedy or myopic policies, the most frugal policies produce
states that are much more highly correlated to the original encoding state
for the first few subsequent memoranda. This effect is expected, since it is
in essence the mathematical purpose of the frugality regularizer. However,
the slot overlap associated with the frugal policy does cross over the greedy
policy several stimuli into the future (see Figure 4), ultimately yielding en-
coding states that are less correlated to the original after only about four
subsequent stimuli. So there is a subtle effect of attenuated overwriting at
long latencies for the frugal policies. On the other hand, the greedy poli-
cies yield encoding states that do not correlate strongly at all to the original
state that stays within a relatively small range going forward, again imply-
ing that this policy tends to distribute stimuli across mnemonic resources.

4.2 Intrinsic Benefits to Timescale Heterogeneity. Neural activity in
memory areas such as dorsolateral prefrontal cortex displays elevated ac-
tivity during delay periods, though there is variability in the timescales with
which such activity is maintained (Miller et al., 1996; Shafi et al., 2007).
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However, despite this variability, stable memory representations can be
decoded with ensuing behavioral robustness. Our results here indicate a
potential benefit to variable timescales of local representations in terms of
longitudinal resource management, as opposed to acutely in the encoding
of a single item. That is, variability promotes the distribution of resources
to incoming stimuli, thus enabling function in sequential, multi-item
scenarios.

4.3 Stimulus Relevance and Encoding Bias. By construction, we as-
sume every stimulus in an input signal u(t) is task relevant, that is, the in-
formation represented via each βk is meaningful to some functional goal
and thus must be encoded within the network. Thus, we do not explicitly
consider higher-level attention-like processes that might dictate the relative
importance of different stimuli in a sequence. Nonetheless, our formulation
could be generalized to interface with such processes via the weighting pa-
rameter λe. For instance, λe could act as an online filter such that the mag-
nitude of λe dictates the relative relevance of a stimulus and the respective
degree to which the network prioritizes its encoding. Such online updates
of accuracy weights would further enable the network to utilize and balance
different aspects of accuracy- versus frugality-focused policies.

4.4 Mathematical Interpretations. We note that the cost function is
strictly convex; hence, a unique, global policy exists when we assume λ f 	=
0. In this scenario, the cost bears some resemblance to problems in efficient
neural coding, with an L2 regularizer on a least-squares cost. The mathemat-
ical tractability of this problem enables the analytical specification of b(t).
Thus, λ f = 0 implies J(t) is only convex, resulting in a nonunique optimal
policy (see the appendix for more details).

4.5 Network Performance Preserved across Dimensions. A crucial as-
sumption in our work is the underdetermined nature of the decoding prob-
lem specified by z(t) = Cx(t) (i.e., d < N). In the analysis, we have fixed
these parameters, though it is also of interest to consider the robustness of
the results to different signal dimensions and network sizes. However, a di-
rect comparison across different values of d or N brings about certain math-
ematical limitations. Foremost, it is important to note that the slot overlap
R

(
x(t+

j ), x(t+
k )

)
is inherently sensitive to the similarity of the original stim-

uli, since our gating policy is, fundamentally, a linear transformation. Thus,
with all other variables equal, small-dimension stimuli will tend to produce
higher overlap with one another on average than those with higher dimen-
sion. Furthermore, the value of the norm in J f ru grows as the number of
elements (i.e., N) in x(t) increase, thus dampening the effect of λ f . Thus, net-
works of different sizes will require different frugality regularizers in order
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Figure 6: Slot utilization is consistent for different ratios of dimension. Gener-
ating sample sets of u(t) for signal dimensions d ∈ {4, 30}, we run simulations
with N ∈ {80, 160} with fixed eigenvalue mean μ = −25 and compare network
performance for the different degrees of encoding freedom prescribed by the
ratio of d to N. We average within each sample set and again across subsequent
encoding steps j − k for each stimulus within each u(t), comparing the effect of
d and N modulated by spread in subnetwork decay rates σ and relative prioriti-
zation of frugality via λ f . (A) Slot overlap across frugality with moderate spread
of decay rates σ = 3.6 for the same network size N = 80 as the simulations out-
lined above but with small d = 4, as well as for (B) the same signal dimension
d = 30 as above but with large N = 160. (C) We similarly consider slot overlap
across decay rate heterogeneity σ with moderate frugality weight λ f = 100 for
N = 80 and small d = 4 and (D) d = 30 and large N = 160 again. Distribution of
stimuli across network slots is still encouraged by large λ f and σ , and thus the
relative network behavior is consistent for different d and N.

to achieve comparable overlap relationships. With these points in mind, we
can nonetheless establish that the relative behavior of the policy with re-
spect to λ f and σ is robust to changing d and N. Figure 6 replicates our
previous figures for both a larger N and a smaller d, where we again see, as
expected, that large λ f promotes frugality of immediate stimuli and greater
heterogeneity reduces overlap. Further expected is the attenuation of λ f ’s
influence for larger networks (see Figures 6B and 6D), particularly in terms
of retention through successive encodings.
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4.6 Network Interpretations and Limitations. The policy is enacted as
a fixed mechanism across the network. As described, there is correspon-
dence between this mechanism and certain canonical motifs that are be-
lieved to be overexpressed in neural circuits, namely, those of lateralized
inhibition and gain control. In essence, memory units feed back their state
to modulate the projection of sensory afferent signals onto slots. The ques-
tion, of course, is how such connectivity could be learned in biologically
plausible ways. Certainly the gradient of the cost could be used to define a
descent rule for incremental update of network parameters through canon-
ical learning methods such as backpropogation through time (Rumelhart
et al., 1985). However, a conceptual issue would still arise regarding the ex-
tent to which global information would be required to enact such a rule,
particularly if connectivity is to be updated in an online manner. Work by
Kafashan and Ching (2017) and Murray (2019) among others has explored
local learning implementations (i.e., those dependent only on local or pair-
wise interaction between neural units) for cost functions similar to the
ones we consider here. However, these usually assume approximation of
global information or large timescale separation in learning the connectivity
versus enacting the optimized functions in question. For now, we leave
learning the network connectivity as an open question, with our primary
findings extending to an interpretation of the network in its optimized form.

A related limitation in our model is the presumption of a fixed decoder
z(t) in the specification of J(t). This assumption manifests in the matrix C
directly parameterizing the allocation policy, ultimately influencing how
network slots evolve and interact with one another. We have used C in our
study as a theoretical construct that implies memory slots are “read out”
into a lower-dimensional space, such that there is some slot redundancy.
The exact specification of C and degree of correlation with the stimuli to
encode is arbitrary here, modulo rank considerations. Relaxing these as-
sumptions to consider more general decoding schemes and neuronal-level
encoding is left for future study.

In our framework, network state x(t) is defined as some abstract repre-
sentation of the network’s activity. Specifically, values in the subnetwork
slots represent activity to be decoded into information, with such activity
eventually decaying to zero without further input in a sense of “forgetting”
the stored information. In this way, xi(t) = 0 is interpreted as a lack of de-
codable information within the ith slot, or a return to background activity.
True, spontaneous background activity as seen in empirical studies is not
modeled.

Appendix

A.1 Convexity of J(t). To guarantee a global solution to the optimiza-
tion problem, equation 2.9, the cost function J(tk) must be convex. We now
proceed to show via second-order methods that J(tk) is indeed convex and
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is in fact strictly convex, implying the global solution is unique. Due to the
discrete nature of the input signal u(t), we first specify that

d
db(t)

x(t+
k ) = d

db(t)
b(tk)wxβk

= wxβk,

and can now compute the gradient of J(tk) with respect to b(tk). To begin,
consider the gradients of the two cost terms:

∇Jenc(tk) = d
db(t)

‖Cx(t+
k ) − βk‖2

2

= 2
[
Cx(t+

k ) − βk
]T d

db(t)

[
Cx(t+

k ) − βk
]

= 2
[
Cx(tk) − βk

]T
Cwxβk + 2b(tk)TCTC(wxβk)2,

∇J f ru(tk) = d
db(t)

‖x(t+
k ) − x(tk)‖2

2

= d
db(t)

‖b(tk)wxβk‖2
2

= 2b(tk)T (wxβk)2.

Therefore, the full gradient of J(tk) is given by

∇J(tk) = λe
d

db(t)
Jenc(tk) + λ f

d
db(t)

J f ru(tk)

= 2λe
[
Cx(tk) − βk

]T
C(wxβk) + 2b(tk)T[

λeCTC + λ f IN
]
(wxβk)2, (A.1)

and the Hessian easily follows:

HJ(tk) = 2(wxβk)2[λeCTC + λ f IN
]
.

When we assume wxβk > 0, we see that HJ(tk) is strictly convex, as CTC
and IN are positive semidefinite and positive-definite matrices, respectively.
However, when we consider the cost function without the regularizer (i.e.,
assume λ f = 0), the gradient and Hessian respectively become

∇J(tk)|λ f =0 = 2λe
[
Cx(tk) − βk

]T
C(wxβk) + 2λeb(tk)TCTC(wxβk)2,

HJ(tk)|λ f =0 = 2λe‖Cwxβk‖2
2,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/5/1022/2366802/neco_a_01655.pdf by W
ashington U

niversity in St. Louis user on 21 August 2024



1038 B. Jones, L. Snyder, and S. Ching

causing the cost function to be simply convex if no further assumptions
are given, guaranteeing a global but not necessarily unique solution to the
optimization problem.

A.2 Derivation of Policy and Closed-Loop System. To find an analyt-
ical solution to the optimization problem, equation 2.9, we seek the mini-
mizer of J(tk). Setting ∇J(tk) = 0 from equation A.1, we easily arrive at the
solution in equation 2.9,

b(tk) = − λe

wxβk

[
λeCTC + λ f IN

]−1
CT(

Cx(tk) − βk
)
.

A.3 Closed-Loop Dynamics. We can now simply plug the derived pol-
icy into our original network expression, equation 2.1, noting that δ(t − tk)
and 1T (t) are effectively redundant and conveniently collapse into 1T (t):

ẋ(t) = Ax(t) + B(t)u(t)

= Ax(t) + 1T (t)b(tk)(wxβk)

= Ax(t) + 1T (t)λe
[
λ f IN + λeCTC

]−1
CT[

βk − Cx(tk)
]

= Ax(t) + 1T (t)λe�(λ f , λe)−1CT[
βk − Cx(tk)

]
.
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