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Abstract 

Individual differences in the spatial organization of resting state networks have received 

increased attention in recent years. Measures of individual-specific spatial organization of brain 

networks and overlapping network organization have been linked to important behavioral and 

clinical traits and are therefore potential biomarker targets for personalized psychiatry 

approaches. To better understand individual-specific spatial brain organization, this paper 

addressed three key goals. First, we determined whether it is possible to reliably estimate 

weighted (non-binarized) resting state network maps using data from only a single individual, 

while also maintaining maximum spatial correspondence across individuals. Second, we 

determined the degree of spatial overlap between distinct networks, using test-retest and twin 

data. Third, we systematically tested multiple hypotheses (spatial mixing, temporal switching, 

and coupling) as candidate explanations for why networks overlap spatially. To estimate 

weighted network organization, we adopt the Probabilistic Functional Modes (PROFUMO) 

algorithm, which implements a Bayesian framework with hemodynamic and connectivity priors 

to supplement optimization for spatial sparsity/independence. Our findings showed that 

replicable individual-specific estimates of weighted resting state networks can be derived using 

high quality fMRI data within individual subjects. Network organization estimates using only data 

from each individual subject closely resembled group-informed network estimates (which was 

not explicitly modeled in our individual-specific analyses), suggesting that cross-subject 

correspondence was largely maintained. Furthermore, our results confirmed the presence of 

spatial overlap in network organization, which was replicable across sessions within individuals 

and in monozygotic twin pairs. Intriguingly, our findings provide evidence that overlap between 

2-network pairs is indicative of coupling. These results suggest that regions of network overlap 

concurrently process information from both contributing networks, potentially pointing to the role 

of overlapping network organization in the integration of information across multiple brain 

systems. 

 

 

Keywords: Resting state functional MRI; brain networks; spatial overlap; individualized 

organization. 
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1. Introduction 

Recent studies have revealed substantial inter-individual variability in the spatial organization of 

the brain as measured with resting state functional MRI (rfMRI) (Braga & Buckner, 2017; 

Glasser et al., 2016; Gordon, Laumann, Adeyemo, & Petersen, 2017; Gordon, Laumann, 

Adeyemo, Gilmore, et al., 2017; Gordon, Laumann, Gilmore, et al., 2017; Laumann et al., 2015; 

D. Wang et al., 2015). Importantly, such inter-individual spatial variability in functional brain 

organization is strongly associated with behavioral traits (Bijsterbosch et al., 2018; Kong et al., 

2019). The overarching objective of this paper is to characterize weighted (i.e., non-binarized) 

spatial organization of resting state networks within individuals, with a specific focus on gaining 

insights into spatially overlapping network organization. We focus on network overlap because 

recent work has highlighted that individual differences in network overlap are strongly 

associated with behavior (Bijsterbosch et al., 2019). Yet, the complex spatially overlapping 

nature of network organization is largely underestimated and understudied in traditional rfMRI 

analysis approaches that enforce binary area/network assignment or encourage spatial 

independence of networks. 

 

Identifying network organization at the individual level rather than using group information raises 

multiple challenges. First, individual estimates of network organization are noisier than group 

estimates, partly because group estimates benefit from collating large amounts of data. This 

challenge can be partially addressed by obtaining large amounts of data from each individual 

(precision functional mapping approach (Gratton et al., 2020)), but such extensive data 

acquisition may not be feasible in all participants and settings.  Second, although a purely 

individual-specific set of network maps represents the most accurate and unbiased estimate of 

the individual’s brain organization (Gordon, Laumann, Gilmore, et al., 2017), it may lack network 

correspondence across individuals. Assuming the presence of cross-participant commonalities 

in their network structure, such group correspondence is valuable for network labeling and 

interpretability, and essential for group-level and between-subject analytical comparisons. 

Group-based estimates applied to individuals have built-in correspondence, but these individual 

estimates may be biased towards the group estimate (Bijsterbosch et al., 2019). Probabilistic 

Functional Modes (PROFUMO) is a Hierarchical Bayesian algorithm developed to try to 

optimize this trade-off by using group-level priors to achieve correspondence, whilst optimizing 

individual-specific estimates to maximize the accuracy of individual network maps (Harrison et 

al., 2015). Compared to other hierarchical network approaches such as (Kong et al., 2019), 

PROFUMO estimates the group prior from the data (instead of adopting an atlas) and includes a 

group prior on the temporal connectivity matrix (for a comprehensive overview of hierarchical 

model differences, please see Appendix 1 for (Farahibozorg et al., 2021)). Although PROFUMO 

has been successfully applied in group data (Bijsterbosch et al., 2018; Farahibozorg et al., 

2021; Harrison et al., 2020), an open question is whether it can be robustly applied to data from 

only a single individual without sacrificing correspondence, which is of particular interest in the 

context of personalized psychiatry and translational work in non-human primates and other 

animal models. The first goal of this paper was to determine whether PROFUMO can reliably 

estimate weighted (i.e., non-binarized) resting state networks using only data from a single 

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00046/2183270/imag_a_00046.pdf by guest on 23 November 2023

https://paperpile.com/c/k0dnpg/3JhVv+sCSvP+LJzpx+DbJnc+xqcut+mpNL8+jJhmU
https://paperpile.com/c/k0dnpg/3JhVv+sCSvP+LJzpx+DbJnc+xqcut+mpNL8+jJhmU
https://paperpile.com/c/k0dnpg/3JhVv+sCSvP+LJzpx+DbJnc+xqcut+mpNL8+jJhmU
https://paperpile.com/c/k0dnpg/3JhVv+sCSvP+LJzpx+DbJnc+xqcut+mpNL8+jJhmU
https://paperpile.com/c/k0dnpg/Xq0ZW+1jP7
https://paperpile.com/c/k0dnpg/Xq0ZW+1jP7
https://paperpile.com/c/k0dnpg/9Ir8
https://paperpile.com/c/k0dnpg/tWrlv
https://paperpile.com/c/k0dnpg/mpNL8
https://paperpile.com/c/k0dnpg/9Ir8
https://paperpile.com/c/k0dnpg/iBv2I
https://paperpile.com/c/k0dnpg/iBv2I
https://paperpile.com/c/k0dnpg/1jP7
https://paperpile.com/c/k0dnpg/K7uu
https://paperpile.com/c/k0dnpg/cgzc4+K7uu+Xq0ZW
https://paperpile.com/c/k0dnpg/cgzc4+K7uu+Xq0ZW


4 
 

subject, while also achieving substantial “non-enforced” correspondence across individuals (i.e., 

without data from other participants contributing to a group prior to inform correspondence). 

 

Spatial overlap between rfMRI networks beyond classical ‘hub regions’ has been observed 

across a variety of analytical brain representations (Lee et al., 2016; Lin et al., 2018; Najafi et 

al., 2016), and has been linked to behavioral traits (Bijsterbosch et al., 2019). PROFUMO 

accurately estimates spatial overlap in rfMRI network organization (Bijsterbosch et al., 2019), 

which is a key advantage compared to approaches that aim for a ‘hard’ binarized parcellation or 

approaches that enforce spatial independence between networks (Bijsterbosch et al., 2020). 

Despite broad interest in ‘hub’ regions within the graph theory domain that typically adopts hard 

parcellations (Bertolero et al., 2018; Buckner et al., 2009; Warren et al., 2014), a detailed spatial 

investigation into individual-specific overlap between weighted estimates of network 

organization is lacking. Studying the overlapping properties of individualized brain networks is of 

interest because network overlap may be a sensitive marker for use in personalized psychiatry 

settings (Gratton et al., 2020; Insel, 2014; Williams, 2016) given prior evidence of behavioral 

relevance (Bijsterbosch et al., 2019), provided that it can be robustly and reliably detected in 

individuals. Furthermore, this work contributes to the broader literature on precision functional 

mapping (Gordon, Laumann, Gilmore, et al., 2017; Gratton et al., 2018; Poldrack, 2017; 

Poldrack et al., 2015). The second goal of this paper was to characterize network overlap 

among weighted individual-specific resting state networks estimated using PROFUMO.  

 

Each type of resting state fMRI analysis (e.g., using different approaches such as Independent 

Component Analysis, graph theory, amplitude of low frequency fluctuations, PROFUMO, etc.) 

provides a different low-dimensional representation of the dataset (Bijsterbosch et al., 2020). 

Although optimized to best fit the data (Bijsterbosch et al., 2021), these brain representations 

(i.e., summary measures derived from different approaches to rfMRI data, such as connectivity 

matrices, network maps, amplitude maps, etc.) are necessarily lossy given the intrinsic goal of 

dimensionality reduction. In the case of PROFUMO, a set of stationary large-scale modes of 

brain organization are derived that collapse fine grained spatial structure and simplify temporally 

dynamic processes. As such, there are multiple potential mechanisms that may give rise to 

spatially overlapping network organization as observed between network maps estimated with 

PROFUMO. First, it is possible that a brain region in which two networks appear to overlap may 

in fact be a spatially heterogeneous mixture of cortical patches that are individually part of either 

network 1 or network 2, implying no real functional “link” between the two networks as a result of 

the overlap (Fig. 1A). Such a spatially heterogeneous overlap region may, for example, result 

from network interdigitation (Braga et al., 2019; Braga & Buckner, 2017), or regional gradients 

(Blazquez Freches et al., 2020; Haak et al., 2018). Second, the region of network overlap may 

dynamically switch its network allegiance over time to be part of either network 1 or network 2 at 

any given moment (Hutchison et al., 2013) (Fig. 1B). Such dynamic switching would appear as 

a spatially overlapping network structure given the stationary (time-averaging) nature of the 

PROFUMO model. Third, network overlap might indicate that signals from network 1 and 

network 2 are jointly processed and “deeply functionally integrated” within regions of network 

overlap (Fig. 1C). This third hypothesis is perhaps the most intriguing as it may indicate 

information coupling involving a specific functional role of overlap regions, and contributing to 
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between-network communication. The third goal of this paper was to systematically compare 

these spatial mixture, dynamic switching, and coupling hypotheses of network overlap. 

 
Figure 1: Graphical summary of the three hypotheses of network overlap. A) The spatial mixing 

hypothesis suggests that individual vertices (illustrated as neurons) within a region of network overlap 

may be part of either Network 1 (red) or Network 2 (blue). B) The dynamic switching hypothesis suggests 

that a region of network overlap may be spatially homogeneous but may switch network allegiance 

between Network 1 (red) and Network 2 (blue) over time. C) The coupling hypothesis suggests that a 

region of network overlap may integrate information from both Networks 1 and 2.  

 

In this paper we leveraged a unique subset of the Human Connectome Project Young Adult 

data (Van Essen et al., 2013), by focusing on individuals who underwent three complete resting 

state sessions (3T, 3T re-scan, and 7T) for a total of approximately 3 hours of rfMRI data per 

individual. The resulting sample of N=20 that met this criteria further included 8 monozygotic 

twin pairs, providing a rich cohort to investigate individual-specific weighted network 

organization. Our focus on a small sample of densely sampled individuals was informed by the 

interest in individual-specific network organization. Although no brain-behavior associations 

were feasible given the small sample (Marek et al., 2022), prior work has extensively studied 

individual differences in PROFUMO including behavioral associations with spatial organization 

(Bijsterbosch et al., 2018), heritability (Harrison et al., 2020), and network variants as a function 

of dimensionality (Farahibozorg et al., 2021). The results of this work support the application of 

PROFUMO weighted networks in individual participants, which paves the way for future 

applications in a personalized psychiatry framework. Furthermore, our findings suggest a 

coupling mechanism underlying spatially overlapping network organization, which supports the 

hypothesis that regions of network overlap play an important functional role in terms of cross-

network coupling (Gordon et al., 2018).  
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2. Methods 

2.1 Dataset 

We used high quality data from the Human Connectome Project (HCP) (Van Essen et al., 

2013), focusing on N=20 individuals (including 8 monozygotic twin pairs) who underwent a 

complete set of four 3T, four 7T and four retest 3T runs, thereby accumulating approximately 

three hours (13,200 timepoints) of rfMRI data across 12 scans per individual. This HCP-YA sub-

sample was 80% female with a mean age of 30.1 years (standard deviation = 3.84; range 22-

34). Briefly, the 3T rfMRI data were acquired at 2mm isotropic voxel size using a multiband 

factor of 8, a TR of 0.72 seconds, and a TE of 33 ms; the 7T rfMRI were acquired at 1.6mm 

isotropic voxel size, a multiband acceleration of 5, in-plane acceleration 2, a TR of 1.0 seconds, 

and a TE of 22.2ms (see further details in (Smith et al., 2013; T Vu et al., 2017; Van Essen et 

al., 2013)). Data were preprocessed using the HCP minimal processing pipelines (Glasser et al., 

2013). All 3T and 7T data were analyzed in the Connectivity Informatics Technology Initiative 

(CIFTI) format, which consists of 91,282 grayordinates with approximately 2-mm spatial 

resolution (i.e., 7T data were downsampled to match the 3T spatial resolution). ICA-FIX was 

then applied to remove structured noise (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), and 

data were aligned using multimodal surface matching (MSM-All; (Robinson et al., 2014)) to align 

areal features (myelin and RSNs).  

2.2 PROFUMO estimation 

PROFUMO is a matrix factorization approach for the estimation of resting state networks that 

adopts spatial prior, temporal priors, and a noise model in a hierarchical Bayesian model (see 

(Harrison et al., 2015, 2020) and Supplementary Tables 1 and 2). PROFUMO spatial maps are 

calculated by vertex-wise multiplying the probability (0-1; the probability that a given weight is 

drawn from the signal rather than the noise distribution) by the estimated mean (derived from 

Gaussian mixture model). PROFUMO was applied in several distinct ways: 

1. Classic group-PROFUMO was performed in which data from all 12 runs across all 20 

participants were used and modeled hierarchically according to the levels of subjects 

and (beneath that) runs. Notably, this version of PROFUMO is recommended for studies 

that include only one or a small number of sessions per individual.  

2. Single-subject PROFUMO was performed independently for each of the 20 participants, 

using all 12 runs for each, those 12 being considered as separate ‘subjects’ in the 

estimation of PROFUMO’s Gaussian mixture model (Harrison et al., 2020). As such, the 

‘group’ priors for single-subject PROFUMO here (and in #4 & #5 below) reflect the 

single-subject averages, such that no data/information from other participants was used 

in these analyses.  

3. Classic group-PROFUMO was performed similar to case (#1), using 12 individual runs 

from 12 separate participants. This was in order to obtain a group-level estimation of 

modes using the same amount of data available for the separate subject runs (case (#2), 

i.e., matching the effective signal to noise ratio; SNR). 
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4. Test-retest single-subject PROFUMO was performed independently for each of the 20 

participants and independently using two sets of 6 runs each (split evenly across 3T, 7T, 

and retest data; and always including a pair of opposite phase-encode directions). 

5. Single-subject PROFUMO similar to case (#2) was performed stepwise on cut-down 

versions of the 12 runs that included a progressively increasing number of timepoints (in 

increments of 1/12th of the run timepoints) to determine how much data are needed to 

obtain reliable network estimates. This approach was taken to ensure that all 

PROFUMO runs included equal contributions from 3T, retest, and 7T data across all 

phase-encode directions. 

All of the PROFUMO runs were performed at a dimensionality of 20 to focus on the spatial 

organization of large scale resting state networks. Furthermore, classic group-PROFUMO (#1) 

was repeated at dimensionalities 15, 30, 40, and 50 to determine the stability of the selected 

networks across PROFUMO decomposition dimensionalities. Beyond the key parameter of 

dimensionality (number of networks), all PROFUMO parameters were set to the default. A 

summary of all PROFUMO parameters, hyperparameters, and hyperpriors can be seen in 

Supplementary Tables S1 and S2. Beyond these PROFUMO parameters, additional key 

measures of interest for this paper include the similarity between group and individual network 

estimates indicative of correspondence and the test-retest reliability of network spatial maps 

representative of stable and reliable network estimates (described further below in sections 2.3 

and 2.4).  

2.3 PROFUMO mode selection 

The Hungarian algorithm (a.k.a. ‘munkres’ algorithm) was used to reorder PROFUMO modes 

(i.e., “networks”) for each of the single-subject runs (#2 above), the split 1 and split 2 single-

subject runs (#4 above), and the 12-run group run (#3 above) to best-match the mode order 

obtained from the full group results. Briefly, the Hungarian algorithm solves the assignment 

problem by permuting rows of the network-to-network spatial correlation matrix to minimize the 

trace of the permuted cost matrix (Kuhn, 1955; Munkres, 1957). For each of the 20 modes we 

estimated the test-retest correlation per subject as the Pearson correlation across all 91,282 

CIFTI grayordinates between split 1 and split 2 single-subject runs. For each of the 20 modes 

we also estimated the subject-group correlation per subject as the Pearson correlation across 

all 91,282 vertices between the map from the subject run (#2 above) and the subject-specific 

estimated map from the group run (#1 above). This ‘group-individual run’ measure addresses 

the question of correspondence across individuals because it compares classic group 

PROFUMO modes (which benefit from explicit correspondence through the group prior in the 

hierarchical Bayesian algorithm) to single-subject PROFUMO modes (which do not involve any 

group information). Modes that achieved both a median (across subjects) test-retest correlation 

of 0.7 or greater and a median (across subjects) group-individual correlation of 0.7 or greater 

were used in subsequent analyses. Notably, 0.7 was previously recommended as a default 

lowest acceptable standard of reliability in basic research (Nunnally, 1967). Out of the 20 

PROFUMO modes, 12 modes met these requirements. Within these 12 modes, individual 

participants’ missing modes were defined as modes with both a test-retest correlation lower 

than 0.2 and a subject-group correlation lower than 0.2 (both estimated at the subject level). 

Missing modes were ignored in subsequent analyses. For naming purposes, modes were 
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spatially mapped onto the Yeo-7 parcellation (Yeo et al., 2011) and we followed the network 

naming taxonomy suggested by (Uddin et al., 2019).  

2.4 PROFUMO mode stability 

We assessed the stability of spatial maps in several ways. As described in section 2.3, the first 

two measures of mode stability were within-participant test-retest reliability between splits 1 and 

2, and within-subject similarity (group-individual run) correlations between the subject run (#2 

above) and the subject estimates obtained in the group run (#1 above). We also tested twin 

similarity (individual runs) and twin similarity (group run) by correlating each PROFUMO mode 

within each monozygotic twin pair using modes from separate subject runs (#2 above) or 

subject-specific estimates from the group run (#1 above), respectively. For comparison, we also 

investigated between-subject similarity (individual runs) and between-subject similarity (group 

run), reflecting the same across-subject correlations for all possible non-twin pairs of 

participants. All mode stability measures were performed on each spatial map (correlation 

across 91,282 vertices), on the temporal connectivity matrix (correlation across the 66 edges in 

the lower triangle, where edges represent the partial correlation between mode timeseries), and 

on the spatial overlap matrix (correlation across the 66 edges in the lower triangle, where edges 

represent the correlation between mode maps; see section 2.5 and (Bijsterbosch et al., 2019)).  

2.5 Spatial overlap measures 

To quantify spatial overlap across all twelve modes, we generated a spatial overlap matrix by 

estimating the Pearson’s correlation coefficients across grayordinates between all possible pairs 

across the 12 network maps, as developed in (Bijsterbosch et al., 2019). Correlation coefficients 

were z-transformed prior to averaging across individuals. Stability of individual specific spatial 

overlap matrices was calculated as described in section 2.4. Importantly, this spatial overlap 

matrix definition of network overlap offers a threshold-free estimation of overlapping network 

organization. 

 

To estimate spatial maps of network overlap in individual participants, each mode was binarized 

using a threshold of 1, and the number of overlapping modes were counted at each vertex. 

Each vertex was multiplied by its corresponding cortical area to estimate the spatial overlap 

area shown in Fig. 7B. A threshold of 1 represents the 96.5th percentile across all map weights 

and therefore offers a relatively conservative estimate of spatial overlap that is driven only by 

vertices with strong network contributions.  

 

 

2.6 Focusing on 2-Network overlap  

To systematically compare our hypotheses regarding network overlap, we focused on spatial 

overlap between pairs of networks. For each individual and each possible network pair 

(12*11/2=66), we identified vertices uniquely associated with network 1 as those vertices with a 

weight of 1 or greater for network 1, a weight of less than 0.1 for network 2, and a summed 

weight across all other 10 modes of less than 0.1 (Fig. 2B). Negative map weights were not 
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included in the estimation of network overlap, because the inclusion of negative vertices would 

dilute averaged timeseries by canceling out positive vertices. A similar procedure was used to 

identify vertices uniquely associated with network 2. To locate the spatial overlap region, we 

identified vertices having a weight of 1 or greater for both network 1 and network 2 and a 

summed weight across all other 10 modes of less than 0.1. To ensure that findings were not 

driven by specific thresholding, all nine possible pairings between three thresholds for network 

vertex weights [0.75 1 1.25] and three thresholds for summed weights [0.02 0.1 0.5] were 

tested. This procedure was performed using mode maps estimated from the individual subject 

PROFUMO runs (#2 above). PROFUMO spatial map values in our data ranged from -3.6 to 7.1, 

and the applied threshold of 1 represents the 96.5th percentile. Hence, thresholds were applied 

to the PROFUMO spatial maps as estimated by the PROFUMO algorithm without further 

transforms.  As such, we focused specifically on two-mode overlap vertices, by removing 

vertices with significant contributions of additional modes (Fig. 2A). We focus on two-network 

overlap because it offers a tightly controlled test-bed for the hypothesis testing element of our 

work. Future work may expand into more complex overlapping network organization. Overlap 

regions were defined based on the data-driven approach described above without any explicit 

exclusions, and the resulting overlap patterns (see Supplementary Figure S1) comprehensively 

cover all areas of potential interest.  

 

The number of network pairs for further investigation was reduced from 66 (all possible pairs) by 

selecting only those networks pairs in which the spatial overlap regions contained at least 25 

vertices for at least half of the participants (n>=10). This network pair selection was performed 

to focus on pairs with robust and replicable overlap, and to reduce the computational demands 

for subsequent analyses. Out of the 66 possible network pairs, 20 pairs were selected for further 

analysis (see Supplementary Figure S1). 

 

For each of the 20 network pairs, three summary timeseries were calculated (Fig. 2B) by 

averaging across: all vertices uniquely associated with network 1 (“N1”), all vertices uniquely 

associated with network 2 (“N2”), and all vertices in the overlap region (“O”). Each timeseries 

was standardized to a mean of zero and a standard deviation of 1 within each of the 12 runs. 

Any participants who did not have any vertices in the overlap region based on these criteria and 

were excluded from subsequent analyses. 
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Figure 2: graphical summary of overlap hypothesis testing methodology. A) Two spatially overlapping networks are selected and vertices are 

assigned to either network 1, network 2, or network Overlap. Vertices contributing to additional networks are excluded. B) Average timeseries are 

extracted per subject, per run for Network 1, Network 2, and Overlap. C) Mixing hypothesis-based semi-simulated (i.e., using actual timeseries 

from non-overlap vertices) versions of the Overlap timeseries are generated based on random and interdigitation-based mixtures of Network 1 and 

Network 2 vertices. D) Switching hypothesis-based semi-simulated versions of the Overlap timeseries are generated based on concatenated 

segments from Network 1 and 2 timeseries. E) Coupling hypothesis-based semi-simulated versions of the Overlap timeseries are generated 

based on additive or multiplicative combinations of Network 1 and 2 timeseries. 
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2.7 Generating semi-simulated data for the overlap region 

Multiple mechanistic hypotheses might in principle explain the occurrence of spatial overlap in 

stationary maps estimated using PROFUMO, and it is currently unknown what drives the 

observed (apparent) spatial overlap. To address this issue, we generated semi-simulated 

versions of overlap timeseries to test different hypotheses as described below. The semi-

simulated version of overlap timeseries were compared to the original overlap timeseries using 

direct timeseries correlation, frequency characteristics (see section 2.8 for further details), and 

by fitting a general linear model (GLM; see section 2.9 for further details).  

 

2.7.1 Network switching hypothesis 

One hypothesis is that the overlap region may dynamically switch network alliance between 

networks 1 and 2 over time within a scanning run (Fig. 1B). Such dynamic switching would 

appear as overlap when using stationary methods such as PROFUMO, which effectively 

average across time. To test this hypothesis, we semi-simulated four versions of the overlap 

timeseries using the real N1 and N2 timeseries for each participant and run: 

● Switch 50 TRs (Fig. 2D) starts with the first 50 timepoints from N1, then contains the 

second 50 timepoints from N2, then the third 50 timepoints from N1 and so on. Notably, 

potential phase shifts between original and semi-simulated data (i.e., mismatches in the 

order between N1 and N2) may impact the correlation between the original and semi-

simulated versions of the timeseries. However, such phase discrepancies would not 

impact our second comparison measure based on the GLM, because the resulting GLM 

beta weights will capture order effects.  

● Switch 25 TRs (Fig. 2D) is the same as above, but switching between N1 and N2 every 

25 timepoints. 

● Switch 10 TRs (Fig. 2D) is the same as above, but switching between N1 and N2 every 

10 timepoints. 

● Max switching (Fig. 2D) assigns each timepoint in the semi-simulated overlap timeseries 

as the maximum from either N1 or N2 based on whichever datapoint (in real data 

timeseries N1 and N2) is higher for a given TR. 

 

2.7.2 Coupling hypothesis 

Another hypothesis is that the overlap region is integrating data from both network 1 and 

network 2 at each TR (Fig. 1C). To test the coupling hypothesis, we semi-simulated two 

versions of the overlap timeseries using the real N1 and N2 timeseries for each participant and 

run: 

● Linear additive coupling (Fig. 2E) is the sum of N1 and N2 within each TR. 

● Nonlinear multiplicative coupling (Fig. 2E) takes the element-wise product between N1 

and N2 after setting N1 and N2 to a minimum of zero (to avoid negative values) 

respectively.  

 

2.7.3 Spatial mixture hypothesis  

A final hypothesis is that the overlap region is a spatial mixture of vertices linked to network 1 

and network 2 (Fig. 1A), akin to the concept of network interdigitation (Braga & Buckner, 2017) 
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or within-region gradients (Haak et al., 2018). To test this hypothesis, we semi-simulated two 

versions of the overlap timeseries using the real vertex timeseries uniquely associated with 

either network 1 or network 2. In contrast to the other semi-simulated versions of the overlap 

timeseries described above, this method does not use the mean N1 and N2 timeseries and 

instead repeats the averaging across vertices. 

● Spatial random mixture (Fig. 2C) assigns half of the vertices in the overlap region to a 

randomly chosen vertex out of those uniquely associated with network 1 (with 

replacement) and assigns the other half of the vertices in the overlap region to a 

randomly chosen vertex out of those uniquely associated with network 2 (with 

replacement). The semi-simulated overlap timeseries is then averaged across all 

vertices and standardized as above.  

● Spatial interdigitation (Fig. 2C) assigns each vertex in the overlap region based on 

whether the spatial weight for that vertex was higher for network 1 or for network 2. If the 

spatial weight for M-FPN 1 is higher, the timeseries of the vertex uniquely associated 

with network 1 with the grayordinate that is closest in vectorized indexing is assigned to 

that overlap vertex (with replacement). The semi-simulated overlap timeseries is then 

averaged across all overlap vertices and standardized as above. We refer to this option 

as ‘spatial interdigitation’ because the PROFUMO spatial weights reflect spatially 

contiguous areas (see supplementary figure S2).  

Although the 7T data were acquired at higher resolution than the 3T data, we analyzed data on 

the same 32k mesh (i.e., matched resolution). A deeper investigation into high resolution 7T 

network organization is beyond the scope of this work.  

2.8 Frequency characteristics of semi-simulated timeseries 

Fourier transforms were performed on the original overlap timeseries and each of the eight 

semi-simulated overlap timeseries to compare the resulting frequency characteristics. Fourier 

transforms were performed separately for each participant and each run using only the 3T runs 

(8 per individual) for ease of comparison due to matched TR and timeseries length. Resulting 

power spectra were normalized to a maximum of 1 for ease of comparison.  

2.9 Hypothesis testing using the general linear model 

The advantage of the semi-simulated timeseries approach above is that it offers a hypothesis-

testing framework with direct comparisons across hypotheses based on timeseries correlations 

between the semi-simulated and original overlap timeseries. The general linear model (GLM) 

offers a complementary approach based on model fit. Advantages of the GLM approach include 

data-driven estimation of coefficients. These data-driven parameter estimates enable non-equal 

contributions from network 1 and network 2 in the linear coupling hypothesis, and can address 

ordering effects and window-duration challenges in the switching hypotheses. As such, we 

adopted a GLM framework to corroborate or refute results from the semi-simulated approach. 

For all GLMs below, the dependent and independent variables were all demeaned and variance 

normalized prior to model fit. The GLMs were fit separately for each participant and each 

network pair, and GLMs were also fit separately to data from each of the 12 runs. To enable 

model comparisons across hypotheses, we adopt adjusted 𝑅2 across a range of models 
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described below. Importantly, the adjusted 𝑅2 is used to account for differences in model 

complexity.  

 

2.9.1 Network switching hypothesis 

To test the switching hypothesis, two separate GLMs were fit to each windowed segment, using 

the following equations:  

Windows with Network 1 alliance:   𝑂𝑤 = 𝛽1 ∗ 𝑁1𝑤 

Windows with Network 2 alliance:   𝑂𝑤 = 𝛽2 ∗ 𝑁2𝑤 

Here, 𝑂 refers to the overlap timeseries, 𝑁1 refers to the timeseries from network 1, and 𝑁2 

refers to the timeseries from network 2 (all derived from the original data, averaged across 

vertices). 𝑤 indicates the window, which is modeled as a sliding window of 10 timepoints shifted 

in steps of 1 timepoint. Note that there is no need to model longer sliding window durations, 

because any switching behavior in longer windows will be captured across multiple shorter 

windows. For each window, the adjusted 𝑅2 of the best performing model (either network 1 

alliance or network 2 alliance) was recorded, and the resulting vector of 𝑅2 was averaged 

across windows. If the overlap region is dynamically switching alliance over time, then any 

individual segment should be well explained by either N1 or N2, and the resulting 𝑅2 (selected 

as the highest between the two models above) should therefore be equal or higher to 𝑅2 for 

other GLMs described below.  

 

2.9.2 Coupling hypothesis 

To test the coupling hypotheses, separate GLMs were fit to compare the linear, combined 

(including linear and nonlinear terms), and nonlinear coupling hypothesis. Models were fit to the 

overall timeseries using the equations: 

Linear hypothesis:    𝑂 = 𝛽1 ∗ 𝑁1 +  𝛽2 ∗ 𝑁2 

Combined linear and nonlinear model:  𝑂 = 𝛽1 ∗ 𝑁1 +  𝛽2 ∗ 𝑁2 + 𝛽3 ∗ 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

Nonlinear hypothesis (interaction only): 𝑂 = 𝛽3 ∗ 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

The nonlinear GLM models the interaction term, which is calculated by point-wise multiplying N1 

by N2, after setting the minimum of both N1 and N2 to zero. The 𝑅2 for each model was 

recorded and compared across other hypotheses.  

 

2.9.3 Spatial mixture hypothesis  

To test the spatial mixture hypotheses, separate GLMs were fit to each vertex timeseries in the 

region of network overlap using the equation: 

Spatial mixture hypothesis:   𝑂𝑣 = 𝛽1
𝑣 ∗ 𝑁1 + 𝛽2

𝑣 ∗ 𝑁2 

Here, the indexing of 𝑂 on 𝑣 refers to the vertex under investigation. To enable direct 

comparison with other hypotheses, the resulting 𝑅2 was averaged across all 𝑂𝑣. The resulting 

spatial patterns were not further investigate due to poor 𝑅2 performance (see Results section 

3.6).  
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3. Results 

 
Figure 3: PROFUMO mode (i.e., “network”) maps derived from group PROFUMO using all 12 runs for all 

20 participants. For naming purposes, modes were spatially mapped onto the Yeo-7 parcellation (Yeo et 

al., 2011) and we followed the naming convention suggested in (Uddin et al., 2019). FPN = frontoparietal 

network; L = lateral; D = dorsal; M = medial; ON = occipital network; PN = pericentral network. Figures 

illustrate networks on the left hemisphere. All 12 networks showed strong bilateral symmetry. Full brain 

maps can be viewed on Balsa: https://balsa.wustl.edu/study/gm40X. 
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3.1 PROFUMO mode maps 

Out of the total of 20 modes, 12 met the test-retest and subject-group criteria to be considered 

for further analyses (see section 2.3). The 12 modes (Fig. 3) covered well-known occipital 

(visual), pericentral (somatomotor), dorsal frontoparietal (attention), lateral frontoparietal 

(control), and medial frontoparietal (default) networks (Uddin et al., 2019). These 12 modes 

were highly replicable across different dimensionalities of PROFUMO (Supplementary Fig. S3). 

Individual participants had on average 1.4 missing modes (range 0-4; Supplementary Fig. S4). 

Group maps were stable across the group-PROFUMO using all data and group-PROFUMO 

using only 12 runs to match subject analyses, albeit with lower weights in the 12-run results 

reflecting the reduction in SNR (Fig 4 top row). Mode maps for two example participants derived 

from single-subject PROFUMO reveal detailed individual specific organization that closely 

matches maps from the same participants derived from the classic PROFUMO group analysis 

(Fig. 4 middle and bottom rows). The example participants were chosen as non-twin individuals 

with a complete set of 12 modes and are representative in terms of all other indices (as shown 

by highlighting the blue and red data points in Figures 4, 5, 7, S4, S6, S7, S8). Subject-specific 

networks and twin comparisons are shown in Supplementary Fig S5. 
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Figure 4: Comparison of two modes across different PROFUMO runs. A) M-FPN 1 (default 1). B) M-FPN 

2 (default 2). Results display the matched mode from: classic group PROFUMO, classic group 

PROFUMO using only 12 scans PROFUMO runs, single-subject PROFUMO for two separate example 

participants, and subject-specific estimates derived from classic group PROFUMO (same two example 

participants). The example participants were selected to offer a comprehensive overview of the data 

(including, for example, subjects more similar to and more different to the group). Results for all 

participants can be viewed on Balsa: https://balsa.wustl.edu/study/gm40X. Results reveal individual 

differences between single-subject PROFUMO results that accurately match the estimates derived from 

classic group PROFUMO, confirming that PROFUMO can be used to estimate network organization using 

only data from a single subject. For example, the cyan arrows in (A) point to a ‘hole’ in the M-FPN 1 

network  that is consistently observed in subject 195041 and not in subject 125525, and the magenta 

arrows in (B) point to reproducible but subject-specific frontal patterns in the M-FPN 2 network. 
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3.2 PROFUMO mode stability 

An initial objective was to determine whether PROFUMO can reliably estimate resting state 

maps using only data from a single participant. Fig. 5 shows that the highest similarity occurs for 

single-subject PROFUMO spatial maps (test-retest reliability and within-subject similarity in 

columns 1&2, respectively; mean r=0.80±0.18); the next highest similarity occurs for twin 

correlations (Fig 5 columns 3&4; mean r=0.70±0.14); and the lowest similarity occurs between 

non-twin participants (Fig 5 columns 5&6; mean r=0.59±0.15). Each similarity pattern shows a 

‘tail’ of networks having lower stability (Fig. 5), which on further inspection appeared to be 

distributed across participants and across networks. When all modes are included (i.e., not only 

the 12 selected modes and not removing ‘missing’ individual modes), these tails are further 

expanded but the findings described above regarding comparisons between columns remain 

evident (see supplementary figure S6). Single-subject PROFUMO spatial maps derived using 

the 12 runs for the participant (i.e., not including data from other participants) were also highly 

similar to the estimated subject maps derived from the group data informed by all 20 subjects 

with 12 runs each (Fig 5 column 2; mean group-subject r=0.86±0.11), suggesting reasonable 

correspondence at least at this dimensionality. Spatial maps estimates informed by group data 

achieved slightly higher similarity compared to maps estimated from individual runs (Fig 5 

column 4 > 3 and column 6 > 5), revealing the impact of the group prior when performing classic 

hierarchical PROFUMO. Stability estimates for second order statistics, including temporal 

connectivity matrices and spatial overlap matrices, are shown in Supplementary Figures S7 and 

S8.  

 
 

Figure 5: Stability of PROFUMO spatial networks. Results show high within-subject test-retest stability 

and similarity between individual and group estimates. Similarity within twins is lower than within 

individuals, but higher than between non-twin participants. Red and blue dots indicate results from the 

example participants used throughout this paper (separate dots are separate modes).  
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3.3 Amount of data needed to estimate single-subject modes using PROFUMO 

To test how much data from an individual participant were needed to obtain good estimates 

from single-subject PROFUMO, we systematically varied the number of timepoints (in 

increments of 1/12th of the run timepoints), and compared the resulting spatial maps to the 

results that included all timepoints. Mean similarity across the selected (non-missing) mode 

maps increased when the number of timepoints were increased (Fig. 6) and was near 

asymptotic above ~5000 TRs (approximately 1 hour of data per participant). 

 

 
Figure 6: Comparison between subject maps using cut-down versions of the data relative to the subject 

maps obtained using the full dataset. Each dot represents a single mode-map for a single participant. 

Thin black lines indicate the mean and thick black lines indicate the median. 

 

3.4 Spatial overlap 

Consistent with previous work (Bijsterbosch et al., 2019), our results indicate substantial spatial 

correlation across PROFUMO modes (Fig. 7A). Figure 7A shows the spatial overlap matrix 

calculated by correlating pairs of weighted PROFUMO group spatial maps. Notably, spatial 

overlap is ignored in the find-the-biggest overview in Supplementary Fig. S5, in which vertices 

are assigned to a single PROFUMO mode with the highest spatial weight to enable concise 

visualization of all subject maps. Spatial overlap was primarily localized in the lateral parietal 

cortex and posterior cingulate - precuneus regions (Fig. 7C&D), consistent with prior work 

(Bijsterbosch et al., 2019). Spatial overlap maps for two example participants are shown in Fig. 

7C and D; Supplementary Figure S9 shows maps for all participants and across twin pairs, and 

Supplementary Figure S1 shows maps for the selected set of 20 2-network overlap pairs. The 2-

network spatial area estimates were not associated with DVARS (the temporal derivative of the 

root mean square variance (Power et al., 2012); r=-0.06, puncorrected=0.81), suggesting that spatial 

overlap was not sensitive to head motion. Conversely, a trend-level association was observed 

between 5-network spatial area and DVARS (r=-0.45, puncorrected=0.05), although we note that 

our sample size is insufficient to reliably model individual difference (Marek et al., 2022).  
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Figure 7: Overview of spatial overlap. A) Group average spatial overlap matrix, showing pairwise 

correlations between spatial maps. B) Number of vertices with 2, 3, 4, 5+ overlapping networks for each 

individual. Red and blue dots indicate results from the examples participants used throughout this paper. 

C and D) Overlap maps for the same two example participants shown in Fig. 4 (overlap maps for all 

participants can be found in supplementary Figure S9 and on Balsa: 

https://balsa.wustl.edu/study/gm40X). For reference, the borders of the HCP_MMP1.0 cortical parcellation 

from (Glasser et al., 2016) are shown in gray in figures C and D.  

3.5 Semi-simulated data for 2-network overlap 

We derived semi-simulated versions of the overlap timeseries based on combinations of 

network 1 and network 2 timeseries (Fig. 2C,D,E). We assessed how similar the semi-simulated 

timeseries for the overlap region were, compared to the original overlap timeseries (O) by 

estimating the Pearson’s correlation coefficient separately for each network pair, each subject 

and each run. The highest similarity was observed for the linear additive coupling hypothesis, 

which achieved a median correlation of 0.783 (Fig. 8). This result was significantly different from 

the next highest correlation (median of 0.767), observed for the nonlinear multiplicative coupling 

hypothesis (T=6.3, p=3.2*10-10, estimated after z-transformation of the correlation values). 

These findings were observed reliably across all thresholds used for network inclusion and 

exclusion (see Supplementary Figure 10).  
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Figure 8: Correlations between the true overlap timeseries and different versions of the semi-simulated 

overlap timeseries. Thin black lines indicate the mean and thick black lines indicate the median. Highest 

similarity was observed for the linear additive coupling semi-simulated overlap timeseries in bright green. 

Data were combined across all network pairs and all participants, see supplementary figure S10 for 

separate figures per network pair. 

 

Across the 20 different network pairs, the linear additive semi-simulated timeseries achieved the 

highest correlation for 16 network pairs, and the nonlinear multiplicative semi-simulated 

timeseries achieved the highest correlation for the remaining 4 network pairs (see 

Supplementary Fig. S11). Notably, each of the 4 network pairs with highest correlations for the 

nonlinear multiplicative semi-simulated timeseries involved the L-FPN 1 (paired with M-FPN 2, 

L-FPN 2, L-FPN 3, and L-FPN 4 respectively). The L-FPN 1 network includes a specific 

subregion (‘POS2’) of the parietal-occipital sulcus that is highly distinctive from neighboring 

regions in its myelin, thickness, connectivity, and task activation (Glasser et al., 2016). As such, 

the L-FPN 1 network (and POS2 area in particular) warrant future research into their distinctive 

features, including nonlinear origins of network overlap.  

 

Frequency characteristics were highly similar between the original overlap timeseries and all 

semi-simulated timeseries (see supplementary figure S12), although spatial interdigitation 
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timeseries exhibited a slightly raised tail and the temporal switching hypothesis (every 10 TRs) 

has somewhat increased power at 0.1 Hz.  

3.6 General Linear Model results 

The results from the semi-simulated timeseries analysis revealed that the linear coupling 

hypothesis was most strongly supported, followed by the nonlinear coupling hypothesis. We 

subsequently adopted a GLM-based approach to corroborate these findings. Results confirm 

that the linear coupling hypothesis achieved the best model fit (median 𝑅2=0.65), which was 

significantly higher than the nonlinear coupling hypothesis (interaction only; median 𝑅2=0.59, 

T=13.2, p=4.5*10-39; Fig. 9), and was not significantly lower than combined model with the 

nonlinear term added (median 𝑅2=0.65; T=-0.23, p=0.82).  

 

 
Figure 9: Adjusted 𝑅2 derived from GLM analyses (see section 2.9) corroborate the findings from our 

semi-simulated timeseries approach (Fig. 8) showing that the highest model evidence is observed for the 

linear additive coupling hypothesis (in bright green). Note that this analysis only includes one version of 

the spatial mixing hypotheses because the data-driven model fit removes the need for alternates.  
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Discussion 

Our first aim was to determine whether weighted resting state spatial networks can be robustly 

derived from single-subject data without sacrificing correspondence. The results revealed twelve 

resting state networks with high test-retest reliability and remarkably good incidental (i.e., non-

modeled) correspondence with group-informed network estimates (Fig. 4). Notably, the test-

retest reliability of these individual-specific network maps (cosine similarity ~0.8 based on Fig. 

10A in (Harrison et al., 2020)) matches or exceeds many previous estimates of reliability of 

resting state metrics (e.g., average intraclass correlation 0.29 for temporal functional 

connectivity from meta analysis across 25 studies; (Noble et al., 2019)) (Andellini et al., 2015; 

Braun et al., 2012; Dutt et al., 2022; Fiecas et al., 2013; Liao et al., 2013; Nemani & Lowe, 

2021; Noble et al., 2019; Termenon et al., 2016; J. Wang et al., 2017; J.-H. Wang et al., 2011; 

Yang et al., 2021). These findings support the possibility of future personalized psychiatry 

approaches where data from an individual would be separately analyzed and compared to a 

reference cohort to inform clinical decision making. It is possible that increasing the 

dimensionality to extract more finer-grained resting state networks (beyond the 12 selected 

networks out of 20 used here) may reduce test-retest reliability and correspondence. However, 

we showed high stability of the selected networks across higher dimensionalities of PROFUMO 

(Supplementary Fig. S1), and previous work in networks defined with independent component 

analysis reported good reliability up to at least 150 networks (Ma & MacDonald, 2021). 

Importantly, the functional organization of the brain can meaningfully be studied at multiple 

levels of complexity along its organizational hierarchy (Bijsterbosch et al., 2021). Here, we 

specifically chose to investigate the organization of macroscale networks (i.e., low 

dimensionality) because it describes functional organization in relation to widely studied 

canonical networks that are consistently observed across datasets, analysis methods, and 

states (Smith et al., 2009; Uddin et al., 2019; Yeo et al., 2011).  

 

Our second aim was to determine the degree of spatially overlapping network organization. Our 

findings confirm the presence of extensive and stable network overlap in networks estimated 

from single-subject data. Patterns of spatially overlapping network organization vary extensively 

across individuals (Fig. 7 & Supplementary Fig. S6), and previous work has shown that 

individual differences in these overlap patterns are strongly associated with behavior 

(Bijsterbosch et al., 2019). As such, the lower dimensional spatial overlap matrix (Fig. 7A) may 

provide a key summary measure of behaviorally-relevant aspects of spatial organization, while 

reducing the multiple-comparison burden of vertex-wise analysis of spatial organization.  

 

Spatial overlap between individual-specific weighted resting state network maps also offers a 

complementary approach to investigate hub regions. As opposed to traditional hub identification 

methods that rely on temporal correlations, our weighted network approach emphasizes the role 

of shared brain regions as part of the spatial organization of functional networks. It is currently 

unclear whether these distinct temporal versus spatial definitions of hub regions have 

dissociable or shared neurobiological implications. Some evidence suggests that spatial 

networks and hubs may maintain functional integrity over time, potentially for homeostatic 

purposes (Laumann & Snyder, 2021), whereas flexible hubs that can rapidly change their 

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00046/2183270/imag_a_00046.pdf by guest on 23 November 2023

https://paperpile.com/c/k0dnpg/cgzc4
https://paperpile.com/c/k0dnpg/WrCe4
https://paperpile.com/c/k0dnpg/45YMY+h1NDW+9laFL+TbuJq+lg0FK+jwEeN+JQvb1+pWXoE+zeUWE+LyNiu+WrCe4
https://paperpile.com/c/k0dnpg/45YMY+h1NDW+9laFL+TbuJq+lg0FK+jwEeN+JQvb1+pWXoE+zeUWE+LyNiu+WrCe4
https://paperpile.com/c/k0dnpg/45YMY+h1NDW+9laFL+TbuJq+lg0FK+jwEeN+JQvb1+pWXoE+zeUWE+LyNiu+WrCe4
https://paperpile.com/c/k0dnpg/45YMY+h1NDW+9laFL+TbuJq+lg0FK+jwEeN+JQvb1+pWXoE+zeUWE+LyNiu+WrCe4
https://paperpile.com/c/k0dnpg/bzXO1
https://paperpile.com/c/k0dnpg/eFIRD
https://paperpile.com/c/k0dnpg/8oj2h+SL1l9+zxLLq
https://paperpile.com/c/k0dnpg/9Ir8
https://paperpile.com/c/k0dnpg/qSuv0


23 
 

temporal connectivity may provide coordination and switching functions to support cognitive 

control (Cocuzza et al., 2020; Cole et al., 2013; Gordon et al., 2018). Consistent with this 

hypothesis, we have shown that spatial overlap was more strongly associated with stable trait-

like behavior (Bijsterbosch et al., 2018), whereas temporal correlations tracked transitions 

between sensorimotor states (Harrison et al., 2020). However, our prior work also suggests that 

effects of spatial network organization and overlap are observed as temporal correlation 

estimates when unaccounted for in the parcellation (Bijsterbosch et al., 2018, 2019), which may 

indicate that the distinction between spatial and temporal hubs could be purely analytical, driven 

by differences in model cost functions and priors, without distinct neurobiological interpretations. 

Hence, spatial network overlap and temporally strongly connected nodes may serve distinct 

functional purposes (e.g., homeostasis versus switching), or may represent alternative analytical 

estimates of the same underlying neural phenomenon. Further work is needed to gain insight 

into spatial versus temporal hub definitions and their neurobiological functions.  

 

Our third aim was to systematically test different hypotheses (spatial mixture, dynamic 

switching, and coupling hypotheses; Fig. 1) regarding the nature of brain regions in which 

multiple resting state networks appear to overlap. Our findings supported the linear coupling 

hypothesis for the 2-network overlap case (Figs. 8&9). Future work investigating more complex 

patterns of overlap across three or more networks might provide support for a different 

hypothesis. Given that regions of network overlap appear to be actively engaged in processing 

information from all contributing networks, this suggests that network overlap may play an 

important role in the integration of information across multiple brain systems. Notably, the 

results did not conclusively differentiate between linear and nonlinear versions of the coupling 

hypothesis. This differentiation will be of interest for future research because the linear additive 

hypothesis may suggest that multiple networks may coexist within overlap regions without 

influencing one another. Specifically, the combined signal may indicate that both networks 

behave as they do in non-overlap regions without any cross-network modulation or integration. 

The nonlinear hypothesis, on the other hand, requires cross-network integration. Prior work has 

reported that nonlinear binding between multiple task conditions in conjunction hubs (i.e., brain 

regions that selectively integrate activations) was essential for predicting task activation patterns 

from functional connectivity data (Ito et al., 2022). Intriguingly, performance for the nonlinear 

multiplicative hypothesis was not far behind the additive linear hypothesis, which may indicate 

the presence of network interaction. Although the biological mechanisms of network overlap and 

additive/multiplicative coupling are unclear, we hypothesize that regions of network overlap do 

not constitute stand-alone cortical areas but instead play an important role in cross-network 

integration, for example through the synchronization of local field potentials in band-limited 

frequency ranges or their enveloppes (Acland et al., 2023).   

 

Despite offering novel insights into weighted resting state networks estimated within individual 

participants, this work also has several limitations. First, we investigated network organization at 

a PROFUMO dimensionality of 20 and investigated 12 resulting networks of high stability. 

Notably, the 12 networks under investigations were obtained with very high stability across a 

range of PROFUMO dimensionalities (Supplementary Fig. S1). Nevertheless, network overlap 

may behave differently at different dimensions of network decomposition, and both higher 
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(Farahibozorg et al., 2021) and lower (Lenzini et al., 2023) network dimensions are of interest 

for future research. Second, our vertex assignments to network 1, network 2, and overlap 

regions involved thresholding, which is necessarily a simplification of the weighted network 

organization. However, the strict threshold for exclusion and inclusion of vertices enforced a 

relatively conservative definition of overlap that was necessary to make the results interpretable. 

Importantly, we recommend the use of the unthresholded spatial overlap matrix (Fig. 7A) for 

brain-behavior investigations of network overlap. Third, the estimation of network overlap, 

whether based on weighted or thresholded maps, interacts with the contrast-to-noise ratio 

(CNR) of the data, which varies across the cortex and is higher in the lateral parietal region. As 

such, potential future efforts to develop a conclusive map of network overlap in the brain should 

perform careful scaling/normalization to remove any bias resulting from CNR variability across 

the cortex. Furthermore, individual difference studies should match the amount of data used 

across individuals to avoid biased estimates of network overlap that may arise from CNR 

variability across individuals. Fourth, our findings indicating support for the coupling hypothesis 

are consistent with the underlying outer product model used in PROFUMO (and similar methods 

such as ICA). In future work, it will be of interest to test mechanistic hypotheses of network 

overlap using alternative approaches to define the overlap region that do not rely on the outer 

product model. Notably, alternative tools for the definition of network overlap (such as 

(Karahanoğlu & Van De Ville, 2015; Li et al., 2017)) might render different overlap results and 

might have different reliability and data-needs. Fifth, it remains a possibility that spatial mixing 

and/or dynamic switching may occur at finer spatial and temporal resolutions that cannot be 

resolved using resting state MRI data. Furthermore, it is possible that temporally lagged 

correlation structure may play a role in regions of spatial overlap, which can be challenging to 

accurately discern using functional MRI data (Smith et al., 2011) but may be feasible in some 

situations using deconvolution approaches (Mill et al., 2017). Although beyond the scope of the 

current paper, we plan to test spatial mixing, dynamic switching, and temporally lagged 

hypotheses at sub-MRI scales in future research using invasive recording techniques in non-

human primates.  

 

Taken together, we showed that weighted resting state networks derived from single-subject 

data are stable, correspond closely to group-informed networks, and capture overlapping 

network organization, and are therefore important targets for clinical biomarker research. We 

also showed that overlapping network organization is indicative of coupling between networks, 

providing a mechanistic hypothesis for the functional role of these regions.  
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Data and Code Availability 

The data used in this paper are freely available from https://db.humanconnectome.org/ (requires 

free registration). All code for this paper is available on GitHub: 

https://github.com/JanineBijsterbosch/Individual_PROFUMO. Brain maps from figures 3, 4 and 

7 can be viewed in Balsa (including maps for all participants): 

https://balsa.wustl.edu/study/gm40X. 
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